
61A Lecture 18

Wednesday, October 16

Announcements

2

Announcements

• Homework 6 is due Tuesday 10/22 @ 11:59pm

2

Announcements

• Homework 6 is due Tuesday 10/22 @ 11:59pm

• Project 3 is due Thursday 10/24 @ 11:59pm

2

Announcements

• Homework 6 is due Tuesday 10/22 @ 11:59pm

• Project 3 is due Thursday 10/24 @ 11:59pm

• Midterm 2 is on Monday 10/28 7pm-9pm

2

Announcements

• Homework 6 is due Tuesday 10/22 @ 11:59pm

• Project 3 is due Thursday 10/24 @ 11:59pm

• Midterm 2 is on Monday 10/28 7pm-9pm

• Hog strategy contest winners will be announced on Wednesday 10/16 in lecture

2

Memoization

Memoization

Idea: Remember the results that have been computed before

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

4

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

4

(Demo)

Memoized Tree Recursion

5

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache

Distinct trees without memoization:
Distinct trees with memoization:

fib_tree(35)

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache

Distinct trees without memoization:
Distinct trees with memoization:

fib_tree(35)
35

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

5

Call to fib_tree

Found in cache

Distinct trees without memoization:
Distinct trees with memoization:

fib_tree(35)
35

18,454,929

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Time

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time
to compute their result.

7

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time
to compute their result.

7

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time
to compute their result.

7

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

def count_factors(n):

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time
to compute their result.

7

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

Slow: Test each k from 1 through n.

def count_factors(n):

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time
to compute their result.

7

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

Slow: Test each k from 1 through n.

Fast: Test each k from 1 to square root n.
 For every k, n/k is also a factor!

def count_factors(n):

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time
to compute their result.

7

Time (number of divisions)

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

Slow: Test each k from 1 through n.

Fast: Test each k from 1 to square root n.
 For every k, n/k is also a factor!

def count_factors(n):

n

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time
to compute their result.

7

Time (number of divisions)

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

Slow: Test each k from 1 through n.

Fast: Test each k from 1 to square root n.
 For every k, n/k is also a factor!

def count_factors(n):

n

b
p
nc

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time
to compute their result.

7

Time (number of divisions)

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

Slow: Test each k from 1 through n.

Fast: Test each k from 1 to square root n.
 For every k, n/k is also a factor!

def count_factors(n):

n

b
p
nc

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time
to compute their result.

7

Time (number of divisions)

(Demo)

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

Slow: Test each k from 1 through n.

Fast: Test each k from 1 to square root n.
 For every k, n/k is also a factor!

def count_factors(n):

Space

The Consumption of Space

9

The Consumption of Space

Which environment frames do we need to keep during evaluation?

9

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

9

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

9

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

9

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

9

Active environments:

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

9

Active environments:

• Environments for any function calls currently being evaluated

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

9

Active environments:

• Environments for any function calls currently being evaluated

• Parent environments of functions named in active environments

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

9

Active environments:

• Environments for any function calls currently being evaluated

• Parent environments of functions named in active environments

(Demo)

Fibonacci Memory Consumption

10

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Fibonacci Memory Consumption

10

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Fibonacci Memory Consumption

11

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Fibonacci Memory Consumption

11

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Has an active environment

Assume we have
reached this step

Fibonacci Memory Consumption

11

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Has an active environment
Can be reclaimed

Assume we have
reached this step

Fibonacci Memory Consumption

11

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Has an active environment
Can be reclaimed
Hasn't yet been created

Assume we have
reached this step

Order of Growth

Order of Growth

13

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

13

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

13

n: size of the problem

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

13

n: size of the problem

R(n): Measurement of some resource used (time or space)

R(n) = �(f(n))

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

13

n: size of the problem

R(n): Measurement of some resource used (time or space)

R(n) = �(f(n))

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

13

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

13

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

13

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

for sufficiently large values of n.

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

14

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

14

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

�(n)

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

14

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

�(n) �(1)

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

14

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

�(n)

�(n)

�(1)

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

14

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

�(n)

�(n) �(n)

�(1)

Counting Factors

15

Time Space

Slow: Test each k from 1 to n.

Fast: Test each k from 1 to square root n.
 For every k, n/k is also a factor!

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

Order of growth can still be used, even if we can quantify amounts exactly.

def count_factors(n)"

Counting Factors

15

Time Space

�(n) �(1)Slow: Test each k from 1 to n.

Fast: Test each k from 1 to square root n.
 For every k, n/k is also a factor!

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

Order of growth can still be used, even if we can quantify amounts exactly.

def count_factors(n)"

Counting Factors

15

Time Space

�(n) �(1)

⇥(
p
n) �(1)

Slow: Test each k from 1 to n.

Fast: Test each k from 1 to square root n.
 For every k, n/k is also a factor!

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

Order of growth can still be used, even if we can quantify amounts exactly.

def count_factors(n)"

Exponentiation

Exponentiation

17

Exponentiation

Goal: one more multiplication lets us double the problem size.

17

Exponentiation

Goal: one more multiplication lets us double the problem size.

17

 def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

bn =

�
1 if n = 0

b · bn�1 otherwise

Exponentiation

Goal: one more multiplication lets us double the problem size.

17

 def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

17

 def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

17

 def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

17

 def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

(Demo)

Exponentiation

Goal: one more multiplication lets us double the problem size.

18

 def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

Time Space

Exponentiation

Goal: one more multiplication lets us double the problem size.

18

 def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

Time Space

�(n) �(n)

Exponentiation

Goal: one more multiplication lets us double the problem size.

18

 def exp(b, n):
 if n == 0:
 return 1
 else:
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

Time Space

�(n) �(n)

�(log n) �(log n)

Comparing Orders of Growth

Comparing orders of growth (n is the problem size)

20

Comparing orders of growth (n is the problem size)

20

�(bn)

Comparing orders of growth (n is the problem size)

20

�(bn) Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Comparing orders of growth (n is the problem size)

20

�(bn) Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Comparing orders of growth (n is the problem size)

20

�(bn)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Comparing orders of growth (n is the problem size)

20

�(bn)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Comparing orders of growth (n is the problem size)

20

�(bn)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

�(log n)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

�(log n)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

�(log n)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

⇥(n6)

Comparing orders of growth (n is the problem size)

20

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

⇥(
p
n)

⇥(n6)

