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• Homework 6 is due Tuesday 10/22 @ 11:59pm
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• Midterm 2 is on Monday 10/28 7pm-9pm
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The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

9

Active environments: 

• Environments for any function calls currently being evaluated

• Parent environments of functions named in active environments
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