## 61A Lecture 18

Wednesday, October 16

## Announcements

## Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm


## Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
- Project 3 is due Thursday 10/24 @ 11:59pm


## Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
- Project 3 is due Thursday 10/24 @ 11:59pm
- Midterm 2 is on Monday 10/28 7pm-9pm


## Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
- Project 3 is due Thursday 10/24 @ 11:59pm
- Midterm 2 is on Monday 10/28 7pm-9pm
- Hog strategy contest winners will be announced on Wednesday 10/16 in lecture

Memoization

## Memoization

Idea: Remember the results that have been computed before

## Memoization

Idea: Remember the results that have been computed before
def memo(f):

## Memoization

Idea: Remember the results that have been computed before
def memo(f):

```
    cache = {}
```


## Memoization

Idea: Remember the results that have been computed before
def memo(f):
cache $=\{ \}$
def memoized(n):

## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f):
    cache = {}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f): 
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f): }\quad\begin{array}{l}{\mathrm{ Keys are arguments that}}\\{\mathrm{ map to return values}}
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized Same behavior as f,
        if f is a pure function
```


## Memoization

Idea: Remember the results that have been computed before

```
def memo(f): Keys are arguments that
    cache = {} { map to return values
    def memoized(n):
        if n not in cache:
            cache[n] = f(n)
        return cache[n]
    return memoized Same behavior as f,
        if f is a pure function
```

    (Demo)
    
## Memoized Tree Recursion



Time

## The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

## The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.

## The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n):

## The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n):

Slow: Test each k from 1 through n.

## The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n):

Slow: Test each k from 1 through n.

Fast: Test each $k$ from 1 to square root $n$. For every k, n/k is also a factor!

## The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n):
Time (number of divisions)

Slow: Test each k from 1 through n.

Fast: Test each $k$ from 1 to square root $n$. For every k, n/k is also a factor!

## The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n):
Time (number of divisions)

Slow: Test each k from 1 through n. $n$

Fast: Test each $k$ from 1 to square root $n$. For every k, n/k is also a factor!

## The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n):
Time (number of divisions)

Slow: Test each k from 1 through n.

Fast: Test each $k$ from 1 to square root $n$. For every k, n/k is also a factor!
$n$
$\lfloor\sqrt{n}\rfloor$

## The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n):
Time (number of divisions)

Slow: Test each k from 1 through n.

Fast: Test each $k$ from 1 to square root $n$. For every k, n/k is also a factor!
$n$
$\lfloor\sqrt{n}\rfloor$

Space

The Consumption of Space

## The Consumption of Space

Which environment frames do we need to keep during evaluation?

## The Consumption of Space

Which environment frames do we need to keep during evaluation?
Each step of evaluation has a set of active environments.

## The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

## The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

## The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

## Active environments:

## The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

## Active environments:

- Environments for any function calls currently being evaluated


## The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

## Active environments:

- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments


## The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

## Active environments:

- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments

Fibonacci Memory Consumption


## Order of Growth

Order of Growth

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
$\boldsymbol{n}$ : size of the problem

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
$\boldsymbol{n}$ : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$ : Measurement of some resource used (time or space)

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
$\boldsymbol{n}$ : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$ : Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
$\boldsymbol{n}$ : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$ : Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants $k_{1}$ and $k_{2}$ such that

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
$\boldsymbol{n}$ : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$ : Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants $k_{1}$ and $k_{2}$ such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

## Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
$\boldsymbol{n}$ : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$ : Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants $k_{1}$ and $k_{2}$ such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

for sufficiently large values of $\boldsymbol{n}$.

## Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

## Time <br> Space

```
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n-1):
        prev, curr = curr, prev + curr
    return curr
@memo
def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n-2) + fib(n-1)
```


## Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```
Time Space
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n-1):
    \Theta(n)
    return curr
@memo
def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n-2) + fib(n-1)
```


## Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```
Time Space
\Theta(n)\quad\Theta(1)
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n-1):
        prev, curr = curr, prev + curr
    return curr
@memo
def fib(n):
    if n == 1:
        return 0
    if n == 2:
        return 1
    return fib(n-2) + fib(n-1)
```


## Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```
Time Space
\Theta(n)\quad\Theta(1)
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n-1):
        prev, curr = curr, prev + curr
    return curr
@memo
def fib(n):
    if n == 1:
        return 0
    \Theta(n)
    if n == 2:
        return 1
    return fib(n-2) + fib(n-1)
```


## Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```
Time Space
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range(n-1):
\Theta(n)\quad\Theta(1)
    return curr
@memo
def fib(n):
    if n == 1:
        return 0
        \Theta(n)
    \Theta(n)
    if n == 2:
        return 1
        return fib(n-2) + fib(n-1)
```


## Counting Factors

Order of growth can still be used, even if we can quantify amounts exactly.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n)"
Time Space

Slow: Test each $k$ from 1 to $n$.

Fast: Test each $k$ from 1 to square root $n$. For every $k, n / k$ is also a factor!

## Counting Factors

Order of growth can still be used, even if we can quantify amounts exactly.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n)"

Slow: Test each $k$ from 1 to $n$.

Time Space
$\Theta(n)$
$\Theta(1)$

Fast: Test each $k$ from 1 to square root $n$. For every $k, n / k$ is also a factor!

## Counting Factors

Order of growth can still be used, even if we can quantify amounts exactly.

Problem: How many factors does a positive integer $n$ have?

A factor $k$ of $n$ is a positive integer such that $n / k$ is also a positive integer.
def count_factors(n)"

Slow: Test each $k$ from 1 to $n$.

Fast: Test each $k$ from 1 to square root $n$. For every $k, n / k$ is also a factor!

Time Space
$\Theta(n)$
$\Theta(\sqrt{n})$
$\Theta(1)$

## Exponentiation

## Exponentiation

## Exponentiation

Goal: one more multiplication lets us double the problem size.

## Exponentiation

Goal: one more multiplication lets us double the problem size.

```
def exp(b, n):
    if n == 0:
            return 1
    else:
            return b * exp(b, n-1)
```


## Exponentiation

Goal: one more multiplication lets us double the problem size.

```
def exp(b, n):
        if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
```


## Exponentiation

Goal: one more multiplication lets us double the problem size.

```
def exp(b, n):
        if n == 0:
        return 1
    else:
            return b * exp(b, n-1)
```

$$
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
$$

$$
b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{1}{2} n}\right)^{2} & \text { if } n \text { is even } \\ b \cdot b^{n-1} & \text { if } n \text { is odd }\end{cases}
$$

## Exponentiation

Goal: one more multiplication lets us double the problem size.

```
def exp(b, n):
        if n == 0:
        return 1
    else:
            return b * exp(b, n-1)
def square(x):
def square(x):
def fast_exp(b, n):
    if n-== 0:
        return 1
    elif n % 2 == 0:
        return square(fast_exp(b, n//2))
    else:
        return b * fast_exp(b, n-1)
```

$$
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
$$

$$
b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{1}{2} n}\right)^{2} & \text { if } n \text { is even } \\ b \cdot b^{n-1} & \text { if } n \text { is odd }\end{cases}
$$

## Exponentiation

Goal: one more multiplication lets us double the problem size.

```
def exp(b, n):
        if n == 0:
        return 1
    else:
            return b * exp(b, n-1)
def square(x):
    return x*x
def fast_exp(b, n):
    if n-== 0:
        return 1
    elif n % 2 == 0:
        return square(fast_exp(b, n//2))
    else:
        return b * fast_exp(b, n-1)
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
\]
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{1}{2} n}\right)^{2} & \text { if } n \text { is even } \\ b \cdot b^{n-1} & \text { if } n \text { is odd }\end{cases}
\]
```


## Exponentiation

Goal: one more multiplication lets us double the problem size.
Time Space

```
def exp(b, n):
    if n == 0:
        return 1
    else:
            return b * exp(b, n-1)
def square(x):
    return x*x
def fast_exp(b, n):
    if n-== 0:
        return 1
    elif n % 2 == 0:
        return square(fast_exp(b, n//2))
    else:
        return b * fast_exp(b, n-1)
```


## Exponentiation

Goal: one more multiplication lets us double the problem size.
Time Space

```
def exp(b, n):
    if n == 0:
        return 1
    else:
            return b * exp(b, n-1)
def square(x):
    return x*x
def fast_exp(b, n):
    if n-== 0:
        return 1
    elif n % 2 == 0:
        return square(fast_exp(b, n//2))
    else:
        return b * fast_exp(b, n-1)
```


## Exponentiation

Goal: one more multiplication lets us double the problem size.

```
                                    Time

Time
\(\Theta(n)\)
\(\Theta(n)\)
Space
```

def exp(b, n):

```
def exp(b, n):
        if n == 0:
        if n == 0:
        return 1
        return 1
    else:
    else:
            return b * exp(b, n-1)
            return b * exp(b, n-1)
def square(x):
def square(x):
    return x*x
    return x*x
def fast_exp(b, n):
def fast_exp(b, n):
    if n
    if n
        return 1
        return 1
    elif n % 2 == 0:
    elif n % 2 == 0:
        return square(fast_exp(b, n//2))
        return square(fast_exp(b, n//2))
    else:
    else:
        return b * fast_exp(b, n-1)
```

        return b * fast_exp(b, n-1)
    ```
else:
return b * \(\exp (b, n-1)\)
def square(x):
return \(x^{*} x\)
def fast_exp(b, n):
if \(n==0:\)
return 1
elif n \% 2 == 0:
return square(fast_exp(b, n//2))
else:
return b * fast_exp(b, n-1)
```

            return b fast exp(b, n-1)
    
## Comparing Orders of Growth

Comparing orders of growth ( n is the problem size)

Comparing orders of growth ( n is the problem size)

$$
\Theta\left(b^{n}\right)
$$

Comparing orders of growth ( n is the problem size)

$$
\begin{aligned}
& \Theta\left(b^{n}\right) \quad \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828
\end{aligned}
$$

Comparing orders of growth ( n is the problem size)

$$
\begin{aligned}
& \Theta\left(b^{n}\right) \quad \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828
\end{aligned}
$$

Incrementing the problem scales $R(n)$ by a factor.

Comparing orders of growth ( n is the problem size)

$$
\begin{aligned}
& \Theta\left(b^{n}\right) \quad \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828
\end{aligned}
$$

Incrementing the problem scales $R(n)$ by a factor.
$\Theta\left(n^{2}\right)$

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth! Recursive fib takes $\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., operations on all pairs.

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth! Recursive fib takes $\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., operations on all pairs. Incrementing $n$ increases $R(n)$ by the problem size $n$.

Comparing orders of growth ( n is the problem size)

$$
\begin{aligned}
\Theta\left(b^{n}\right) \quad & \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. } \\
\Theta\left(n^{2}\right) \quad & \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} .
\end{aligned}
$$

$\Theta(n)$

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth! Recursive fib takes
$\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$
Incrementing the problem scales $R(n)$ by a factor.
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., operations on all pairs.
Incrementing $n$ increases $R(n)$ by the problem size $n$.
$\Theta(n)$ Linear growth. Resources scale with the problem.

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth! Recursive fib takes $\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., operations on all pairs. Incrementing $n$ increases $R(n)$ by the problem size $n$.
$\Theta(n)$ Linear growth. Resources scale with the problem.
$\Theta(\log n)$

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth! Recursive fib takes $\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., operations on all pairs.
Incrementing $n$ increases $R(n)$ by the problem size $n$.
$\Theta(n)$ Linear growth. Resources scale with the problem.
$\Theta(\log n) \quad$ Logarithmic growth. These processes scale well.

Comparing orders of growth ( n is the problem size)
$\Theta\left(b^{n}\right) \quad$ Exponential growth! Recursive fib takes $\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., operations on all pairs.
Incrementing $n$ increases $R(n)$ by the problem size $n$.
$\Theta(n)$ Linear growth. Resources scale with the problem.
$\Theta(\log n) \quad$ Logarithmic growth. These processes scale well.

Doubling the problem only increments $R(n)$.

Comparing orders of growth ( n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) \quad & \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. } \\
\Theta\left(n^{2}\right) \quad & \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} . \\
\Theta(n) \quad \text { Linear growth. Resources scale with the problem. } \\
\Theta(\log n) \quad \text { Logarithmic growth. These processes scale well. } \\
\Theta(1) & \text { Doubling the problem only increments } \mathrm{R}(\mathrm{n}) .
\end{array}
$$

## Comparing orders of growth ( n is the problem size)

$\Theta\left(b^{n}\right) \quad$ Exponential growth! Recursive fib takes $\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$

Incrementing the problem scales $R(n)$ by a factor.
$\Theta\left(n^{2}\right) \quad$ Quadratic growth. E.g., operations on all pairs.
Incrementing $n$ increases $R(n)$ by the problem size $n$.
$\Theta(n) \quad$ Linear growth. Resources scale with the problem.
$\Theta(\log n) \quad$ Logarithmic growth. These processes scale well.

Doubling the problem only increments $R(n)$.
$\Theta(1)$ Constant. The problem size doesn't matter.

Comparing orders of growth ( n is the problem size)

| $\Theta\left(b^{n}\right)$ | Exponential growth! Recursive fib takes $\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$ <br> Incrementing the problem scales $R(n)$ by a factor. |
| :---: | :---: |
| $\Theta\left(n^{2}\right)$ | Quadratic growth. E.g., operations on all pairs. <br> Incrementing $n$ increases $R(n)$ by the problem size $n$. |
| $\Theta(n)$ | Linear growth. Resources scale with the problem. |
| $\Theta(\log n)$ | Logarithmic growth. These processes scale well. <br> Doubling the problem only increments $R(n)$. |
| $\Theta(1)$ | Constant. The problem size doesn't matter. |

Comparing orders of growth ( n is the problem size)

| $\Theta\left(b^{n}\right)$ | Exponential growth! Recursive fib takes $\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$ |
| :---: | :---: |
| $\Theta\left(n^{6}\right) \cdots \cdots$ | Incrementing the problem scales $R(n)$ by a factor. |
| $\Theta\left(n^{2}\right)$ | Quadratic growth. E.g., operations on all pairs. |
|  | Incrementing n increases $\mathrm{R}(\mathrm{n})$ by the problem size n . |
| $\Theta(n)$ | Linear growth. Resources scale with the problem. |
| $\Theta(\log n)$ | Logarithmic growth. These processes scale well. |
|  | Doubling the problem only increments $R(n)$. |
| $\Theta(1)$ | Constant. The problem size doesn't matter. |

Comparing orders of growth ( n is the problem size)


