61A Lecture 17

Monday, October 14

Special Method Names

Recursive List Class

Announcements

“Homework 5 is due Tuesday 10/15 @ 11:59pm
*Project 3 is due Thursday 10/24 @ 11:59pm
“Midterm 2 is on Monday 10/28 7pm-9pm

Special Method Names in Python

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__ Method invoked automatically when an object is constructed.
__len__ Method invoked by the built-in len function.
__getitem__ Method invoked for element selection: sequence[index]
__repr__ Method invoked to display an object as a string.

>>> s = (3, 4, 5) >>> s = (3, 4, 5)

>>> len(s) >>> s._len_ ()

3 Same 3

>>> s[2] behavior >>> s.__getitem (2)

5 using 5

>>> s methods >>> print(s.__repr_ ())

(3, 4, 5) (3, 4, 5)

Closure Property of Data

A tuple can contain another tuple as an element.
Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

pun SRS o BN S o BN IS KNI

Recursive lists are recursive: the rest of the list is a list.

Now, we can implement the same behavior using a class called Rlist:

Abstract data type (old): rlist(1, rlist(2, rlist(3, rlist(4, empty_rlist))))

Rlist class (new): Rlist(1, Rlist(2, Rlist(3, Rlist(4))))

Recursive List Class

class Rlist:
class EmptyList: Methods can be
t recursive too!

H return 0
(SRR cheiulousi N (Demo)
empty = EmptyList()

def _ init (self, first, rest=empty):
assert type(rest) is Rlist or rest is Rlist.empty

1f.first = first
Calls this method :Zlf r:s:: re::s
with a special name :

def

(self, index):
if index 0z

return self.first

else: . This element
return {self.rest[index-1]i< selection syntax

def len__ (self

return 1 +|

—————— Yes, this call
en(self.rest) '

is recursive

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1l, Rlist(2, Rlist(3)))
>>> s.r

st
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(l, Rlist(2, Rlist(3)))))

def extend_rlist(sl, s2):
if sl is Rlist.empty:
return s2
else:

return Rlist(sl.first, extend_rlist(sl.rest, s2))

Trees

Recursive List Processing

Higher-Order Functions on Recursive Lists
We want operations on all elements of a list, not just an element at a time.

double_rlist(s) Double s.first, then double_rlist(s.rest)

map_rlist(s, fn) Apply fn to s.first, then map_rlist(s.rest, fn)

filter rlist(s, fn) Either keep s.first or not, then filter rlist(s.rest, fn)

In all of these functions, the base case is the empty list.

(Demo)

Tree Structured Data
Nested sequences form hierarchical structures: tree-structured data

(1, 2), (3, 4, 5)

In every tree, a vast forest

Recursive Tree Processing

Tree operations typically make recursive calls on branches.

count_leaves(t) 1 if t is a leaf, otherwise sum count_leaves(branch)

map_tree(t, fn) fn(t) if t is a leaf, otherwise combine map_tree(branch, fn)

In these functions, the base case is a leaf.

(Demo)

Trees with Internal Entries

Trees can have values at their roots as well as their leaves.

3

0 ! / AN /
1

Memoization

AN

S

Trees with Internal Entries

Trees with Internal Entries

Trees can have values at their roots as well as their leaves.

class Tree:
def __init__(self, entry, left=None, right=None):
self.entry = entry
self.left = left
self.right = right

def fib_tree(n):
if n ==
return Tree(0)
if n ==
return Tree(1)
left = fib_tree(n-2)
right = fib_tree(n-1)
return Tree(left.entry + right.entry, left, right)

Memoization

Idea: Remember the results that have been computed before

def memo(f):

Keys are arguments that
map to return values

def memoized(n):
if n not in cache:
cache[n] = f(n)

return cache(n]

returnimemoized |

Same behavior as
f is a pure func

(Demo)

(Demo)

Memoized Tree Recursion

@ C(Call to fib_tree

@ Found in cache

fib_tree(35)
Distinct trees with memoization:
Distinct trees without memoization:

18,454,929

