
61A Lecture 17

Monday, October 14

Announcements

2

Announcements

• Homework 5 is due Tuesday 10/15 @ 11:59pm

2

Announcements

• Homework 5 is due Tuesday 10/15 @ 11:59pm

• Project 3 is due Thursday 10/24 @ 11:59pm

2

Announcements

• Homework 5 is due Tuesday 10/15 @ 11:59pm

• Project 3 is due Thursday 10/24 @ 11:59pm

• Midterm 2 is on Monday 10/28 7pm-9pm

2

Special Method Names

Special Method Names in Python

4

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__ Method invoked automatically when an object is constructed.

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

Method invoked automatically when an object is constructed.

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

>>> s = (3, 4, 5) >>> s = (3, 4, 5)

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

>>> s = (3, 4, 5)
>>> len(s)
3

>>> s = (3, 4, 5)

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

>>> s = (3, 4, 5)
>>> len(s)
3

>>> s = (3, 4, 5)

Same
behavior
using

methods

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

>>> s = (3, 4, 5)
>>> len(s)
3

>>> s = (3, 4, 5)
>>> s.__len__()
3Same

behavior
using

methods

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

__getitem__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

>>> s = (3, 4, 5)
>>> len(s)
3

>>> s = (3, 4, 5)
>>> s.__len__()
3Same

behavior
using

methods

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

__getitem__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

Method invoked for element selection: sequence[index]

>>> s = (3, 4, 5)
>>> len(s)
3

>>> s = (3, 4, 5)
>>> s.__len__()
3Same

behavior
using

methods

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

__getitem__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

Method invoked for element selection: sequence[index]

>>> s = (3, 4, 5)
>>> len(s)
3
>>> s[2]
5

>>> s = (3, 4, 5)
>>> s.__len__()
3Same

behavior
using

methods

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

__getitem__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

Method invoked for element selection: sequence[index]

>>> s = (3, 4, 5)
>>> len(s)
3
>>> s[2]
5

>>> s = (3, 4, 5)
>>> s.__len__()
3
>>> s.__getitem__(2)
5

Same
behavior
using

methods

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

__getitem__

__repr__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

Method invoked for element selection: sequence[index]

>>> s = (3, 4, 5)
>>> len(s)
3
>>> s[2]
5

>>> s = (3, 4, 5)
>>> s.__len__()
3
>>> s.__getitem__(2)
5

Same
behavior
using

methods

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

__getitem__

__repr__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

Method invoked for element selection: sequence[index]

Method invoked to display an object as a string.

>>> s = (3, 4, 5)
>>> len(s)
3
>>> s[2]
5

>>> s = (3, 4, 5)
>>> s.__len__()
3
>>> s.__getitem__(2)
5

Same
behavior
using

methods

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

__getitem__

__repr__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

Method invoked for element selection: sequence[index]

Method invoked to display an object as a string.

>>> s = (3, 4, 5)
>>> len(s)
3
>>> s[2]
5
>>> s
(3, 4, 5)

>>> s = (3, 4, 5)
>>> s.__len__()
3
>>> s.__getitem__(2)
5

Same
behavior
using

methods

Special Method Names in Python

4

Certain names are special (or "magic") because they have built-in behavior.

These names always start and end with two underscores.

__init__

__len__

__getitem__

__repr__

Method invoked automatically when an object is constructed.

Method invoked by the built-in len function.

Method invoked for element selection: sequence[index]

Method invoked to display an object as a string.

>>> s = (3, 4, 5)
>>> len(s)
3
>>> s[2]
5
>>> s
(3, 4, 5)

>>> s = (3, 4, 5)
>>> s.__len__()
3
>>> s.__getitem__(2)
5
>>> print(s.__repr__())
(3, 4, 5)

Same
behavior
using

methods

Recursive List Class

Closure Property of Data

6

Closure Property of Data

A tuple can contain another tuple as an element.

6

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

6

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

6

1

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

6

1

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

2

6

1

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

2 3

6

1

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

2 3 4

6

1

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

2 3 4

Recursive lists are recursive: the rest of the list is a list.

Now, we can implement the same behavior using a class called Rlist:

6

1

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

2 3 4

Recursive lists are recursive: the rest of the list is a list.

Now, we can implement the same behavior using a class called Rlist:

Abstract data type (old):

6

1

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

2 3 4

Recursive lists are recursive: the rest of the list is a list.

Now, we can implement the same behavior using a class called Rlist:

rlist(1, rlist(2, rlist(3, rlist(4, empty_rlist))))Abstract data type (old):

6

1

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

2 3 4

Recursive lists are recursive: the rest of the list is a list.

Now, we can implement the same behavior using a class called Rlist:

rlist(1, rlist(2, rlist(3, rlist(4, empty_rlist))))Abstract data type (old):

Rlist class (new):

6

1

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences of arbitrary length.

Recursive list representation of the sequence 1, 2, 3, 4:

2 3 4

Recursive lists are recursive: the rest of the list is a list.

Now, we can implement the same behavior using a class called Rlist:

rlist(1, rlist(2, rlist(3, rlist(4, empty_rlist))))

Rlist(1, Rlist(2, Rlist(3, Rlist(4))))

Abstract data type (old):

Rlist class (new):

6

Recursive List Class

7

Recursive List Class

class Rlist:

7

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

7

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

7

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):

7

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:

7

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first

7

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first
 else:

7

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first
 else:
 return self.rest[index-1]

7

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first
 else:
 return self.rest[index-1]

7

This element
selection syntax

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first
 else:
 return self.rest[index-1]

7

This element
selection syntax

Calls this method
with a special name

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first
 else:
 return self.rest[index-1]

 def __len__(self):

7

This element
selection syntax

Calls this method
with a special name

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first
 else:
 return self.rest[index-1]

 def __len__(self):
 return 1 + len(self.rest)

7

This element
selection syntax

Calls this method
with a special name

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first
 else:
 return self.rest[index-1]

 def __len__(self):
 return 1 + len(self.rest)

Yes, this call
is recursive

7

This element
selection syntax

Calls this method
with a special name

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first
 else:
 return self.rest[index-1]

 def __len__(self):
 return 1 + len(self.rest)

Yes, this call
is recursive

There's the
base case!

7

This element
selection syntax

Calls this method
with a special name

Recursive List Class

class Rlist:
 class EmptyList:
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 assert type(rest) is Rlist or rest is Rlist.empty
 self.first = first
 self.rest = rest

 def __getitem__(self, index):
 if index == 0:
 return self.first
 else:
 return self.rest[index-1]

 def __len__(self):
 return 1 + len(self.rest)

Yes, this call
is recursive

There's the
base case!

7

(Demo)

Methods can be
recursive too!

This element
selection syntax

Calls this method
with a special name

Recursive List Processing

Recursive Operations on Recursive Lists

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

 def extend_rlist(s1, s2):

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

 def extend_rlist(s1, s2):

 if s1 is Rlist.empty:

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

 def extend_rlist(s1, s2):

 if s1 is Rlist.empty:

 return s2

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

 def extend_rlist(s1, s2):

 if s1 is Rlist.empty:

 return s2

 else:

9

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

 def extend_rlist(s1, s2):

 if s1 is Rlist.empty:

 return s2

 else:

 return Rlist(s1.first, extend_rlist(s1.rest, s2))

9

Higher-Order Functions on Recursive Lists

10

Higher-Order Functions on Recursive Lists

We want operations on all elements of a list, not just an element at a time.

10

Higher-Order Functions on Recursive Lists

We want operations on all elements of a list, not just an element at a time.

10

double_rlist(s)

Higher-Order Functions on Recursive Lists

We want operations on all elements of a list, not just an element at a time.

10

double_rlist(s) Double s.first, then double_rlist(s.rest)

Higher-Order Functions on Recursive Lists

We want operations on all elements of a list, not just an element at a time.

10

double_rlist(s)

map_rlist(s, fn)

Double s.first, then double_rlist(s.rest)

Higher-Order Functions on Recursive Lists

We want operations on all elements of a list, not just an element at a time.

10

double_rlist(s)

map_rlist(s, fn)

Double s.first, then double_rlist(s.rest)

Apply fn to s.first, then map_rlist(s.rest, fn)

Higher-Order Functions on Recursive Lists

We want operations on all elements of a list, not just an element at a time.

10

double_rlist(s)

map_rlist(s, fn)

filter_rlist(s, fn)

Double s.first, then double_rlist(s.rest)

Apply fn to s.first, then map_rlist(s.rest, fn)

Higher-Order Functions on Recursive Lists

We want operations on all elements of a list, not just an element at a time.

10

double_rlist(s)

map_rlist(s, fn)

filter_rlist(s, fn)

Double s.first, then double_rlist(s.rest)

Apply fn to s.first, then map_rlist(s.rest, fn)

Either keep s.first or not, then filter_rlist(s.rest, fn)

Higher-Order Functions on Recursive Lists

We want operations on all elements of a list, not just an element at a time.

10

double_rlist(s)

map_rlist(s, fn)

filter_rlist(s, fn)

Double s.first, then double_rlist(s.rest)

Apply fn to s.first, then map_rlist(s.rest, fn)

Either keep s.first or not, then filter_rlist(s.rest, fn)

In all of these functions, the base case is the empty list.

Higher-Order Functions on Recursive Lists

We want operations on all elements of a list, not just an element at a time.

10

(Demo)

double_rlist(s)

map_rlist(s, fn)

filter_rlist(s, fn)

Double s.first, then double_rlist(s.rest)

Apply fn to s.first, then map_rlist(s.rest, fn)

Either keep s.first or not, then filter_rlist(s.rest, fn)

In all of these functions, the base case is the empty list.

Trees

Tree Structured Data

12

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

12

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

12

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

12

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

1 2 3 4

5

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

1 2 3 4

5

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

1 2 3 4

5

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

1 2 3 4

5

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

1 2 3 4

5

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

1 2 3 4

5

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

1 2 3 4

5

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

1 2 3 4

5

((1, 2), (3, 4), 5)

Tree Structured Data

Nested sequences form hierarchical structures: tree-structured data

((1, 2), (3, 4), 5)

In every tree, a vast forest

12

1 2 3 4

5

Recursive Tree Processing

Tree operations typically make recursive calls on branches.

13

Recursive Tree Processing

Tree operations typically make recursive calls on branches.

13

count_leaves(t)

Recursive Tree Processing

Tree operations typically make recursive calls on branches.

13

count_leaves(t) 1 if t is a leaf, otherwise sum count_leaves(branch)

Recursive Tree Processing

Tree operations typically make recursive calls on branches.

13

count_leaves(t)

map_tree(t, fn)

1 if t is a leaf, otherwise sum count_leaves(branch)

Recursive Tree Processing

Tree operations typically make recursive calls on branches.

13

count_leaves(t)

map_tree(t, fn)

1 if t is a leaf, otherwise sum count_leaves(branch)

fn(t) if t is a leaf, otherwise combine map_tree(branch, fn)

Recursive Tree Processing

Tree operations typically make recursive calls on branches.

13

In these functions, the base case is a leaf.

count_leaves(t)

map_tree(t, fn)

1 if t is a leaf, otherwise sum count_leaves(branch)

fn(t) if t is a leaf, otherwise combine map_tree(branch, fn)

Recursive Tree Processing

Tree operations typically make recursive calls on branches.

13

(Demo)

In these functions, the base case is a leaf.

count_leaves(t)

map_tree(t, fn)

1 if t is a leaf, otherwise sum count_leaves(branch)

fn(t) if t is a leaf, otherwise combine map_tree(branch, fn)

Trees with Internal Entries

Trees with Internal Entries

Trees can have values at their roots as well as their leaves.

15

5

2

1

3

1

0 1 1

0 1

2

1 1

0 1

Trees with Internal Entries

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

 right = fib_tree(n-1)

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

 right = fib_tree(n-1)

 return Tree(left.entry + right.entry, left, right)

16

Trees can have values at their roots as well as their leaves.

Trees with Internal Entries

 class Tree:

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

 right = fib_tree(n-1)

 return Tree(left.entry + right.entry, left, right)

(Demo)

16

Trees can have values at their roots as well as their leaves.

Memoization

Memoization

Idea: Remember the results that have been computed before

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

18

Memoization

Idea: Remember the results that have been computed before

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

18

(Demo)

Memoized Tree Recursion

19

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache
5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache

Distinct trees without memoization:
Distinct trees with memoization:

fib_tree(35)

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache

Distinct trees without memoization:
Distinct trees with memoization:

fib_tree(35)
35

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

Memoized Tree Recursion

19

Call to fib_tree

Found in cache

Distinct trees without memoization:
Distinct trees with memoization:

fib_tree(35)
35

18,454,929

5

2

3

1

0 1
1 1

0 1

2

1 1

0 1

