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In these functions, the base case is a leaf.

count_leaves(t)

map_tree(t, fn)

1 if t is a leaf, otherwise sum count_leaves(branch)
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Trees can have values at their roots as well as their leaves.
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Trees with Internal Entries

    class Tree:

        def __init__(self, entry, left=None, right=None):

            self.entry = entry

            self.left = left

            self.right = right

    def fib_tree(n):

        if n == 1:

            return Tree(0)

        if n == 2:

            return Tree(1)

        left = fib_tree(n-2)

        right = fib_tree(n-1)

        return Tree(left.entry + right.entry, left, right)

(Demo)

16

Trees can have values at their roots as well as their leaves.



Memoization



Memoization

Idea: Remember the results that have been computed before

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

        cache = {}

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

        cache = {}

        def memoized(n):

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

        cache = {}

        def memoized(n):

            if n not in cache:

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

        cache = {}

        def memoized(n):

            if n not in cache:

                cache[n] = f(n)

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

        cache = {}

        def memoized(n):

            if n not in cache:

                cache[n] = f(n)

            return cache[n]

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

        cache = {}

        def memoized(n):

            if n not in cache:

                cache[n] = f(n)

            return cache[n]

        return memoized

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

        cache = {}

        def memoized(n):

            if n not in cache:

                cache[n] = f(n)

            return cache[n]

        return memoized

Keys are arguments that 
map to return values

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

        cache = {}

        def memoized(n):

            if n not in cache:

                cache[n] = f(n)

            return cache[n]

        return memoized

Keys are arguments that 
map to return values

Same behavior as f, 
if f is a pure function

18



Memoization

Idea: Remember the results that have been computed before

    def memo(f):

        cache = {}
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            if n not in cache:

                cache[n] = f(n)

            return cache[n]

        return memoized

Keys are arguments that 
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if f is a pure function
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