
61A Lecture 16

Friday, October 11

Announcements

2

Announcements

• Homework 5 is due Tuesday 10/15 @ 11:59pm

• Project 3 is due Thursday 10/24 @ 11:59pm

• Midterm 2 is on Monday 10/28 7pm-9pm

2

Attributes

Terminology: Attributes, Functions, and Methods

4

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

4

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

4

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

4

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

4

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Terminology:

4

Class
Attributes

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Terminology:

4

Class
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Terminology:

4

Class
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Terminology:

4

Class
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Terminology: Python object system:

4

Class
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects.

Terminology: Python object system:

4

Class
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects.

Bound methods are also objects: a function
that has its first parameter "self" already
bound to an instance.

Terminology: Python object system:

4

Class
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects.

Bound methods are also objects: a function
that has its first parameter "self" already
bound to an instance.

Dot expressions evaluate to bound methods for
class attributes that are functions.

Terminology: Python object system:

4

Class
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects.

Bound methods are also objects: a function
that has its first parameter "self" already
bound to an instance.

Dot expressions evaluate to bound methods for
class attributes that are functions.

Terminology: Python object system:

4

<instance>.<method_name>

Looking Up Attributes of an Object

<expression> . <name>

5

Looking Up Attributes of an Object

<expression> . <name>

To evaluate a dot expression:

5

Looking Up Attributes of an Object

<expression> . <name>

To evaluate a dot expression:

1.Evaluate the <expression>.

5

Looking Up Attributes of an Object

<expression> . <name>

To evaluate a dot expression:

1.Evaluate the <expression>.

2.<name> is matched against the instance attributes.

5

Looking Up Attributes of an Object

<expression> . <name>

To evaluate a dot expression:

1.Evaluate the <expression>.

2.<name> is matched against the instance attributes.

3.If not found, <name> is looked up in the class.

5

Looking Up Attributes of an Object

<expression> . <name>

To evaluate a dot expression:

1.Evaluate the <expression>.

2.<name> is matched against the instance attributes.

3.If not found, <name> is looked up in the class.

4.That class attribute value is returned unless it is a function, in which case a
bound method is returned.

5

Looking Up Attributes of an Object

<expression> . <name>

To evaluate a dot expression:

1.Evaluate the <expression>.

2.<name> is matched against the instance attributes.

3.If not found, <name> is looked up in the class.

4.That class attribute value is returned unless it is a function, in which case a
bound method is returned.

5

Attribute Assignment

Assignment to Attributes

7

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes
for the object of that dot expression

7

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes
for the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

7

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes
for the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

7

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes
for the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

7

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes
for the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

This expression
evaluates to an

object

7

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes
for the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

This expression
evaluates to an

object

7

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes
for the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds or
modifies the

attribute named
“interest” of
tom_account

This expression
evaluates to an

object

7

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes
for the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds or
modifies the

attribute named
“interest” of
tom_account

Instance Attribute
Assignment :

This expression
evaluates to an

object

7

Assignment to Attributes

Assignment statements with a dot expression on their left-hand side affect attributes
for the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds or
modifies the

attribute named
“interest” of
tom_account

Instance Attribute
Assignment :

Account.interest = 0.04
Class Attribute

Assignment :

This expression
evaluates to an

object

7

Attribute Assignment Statements

interest: 0.02
(withdraw, deposit, __init__)

Account class
attributes

8

Attribute Assignment Statements

>>> jim_account = Account('Jim')

interest: 0.02
(withdraw, deposit, __init__)

Account class
attributes

8

Attribute Assignment Statements

>>> jim_account = Account('Jim')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

Account class
attributes

8

Attribute Assignment Statements

>>> jim_account = Account('Jim')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

Account class
attributes

8

Instance
attributes of
jim_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

Account class
attributes

8

Instance
attributes of
jim_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

8

Instance
attributes of
jim_account

Instance
attributes of
tom_account

Inheritance

 Inheritance

10

 Inheritance

Inheritance is a method for relating classes together.

10

 Inheritance

Inheritance is a method for relating classes together.

A common use: Two similar classes differ in their degree of specialization.

10

 Inheritance

Inheritance is a method for relating classes together.

A common use: Two similar classes differ in their degree of specialization.

The specialized class may have the same attributes as the general class,
along with some special-case behavior.

10

 Inheritance

Inheritance is a method for relating classes together.

A common use: Two similar classes differ in their degree of specialization.

The specialized class may have the same attributes as the general class,
along with some special-case behavior.

class <name>(<base class>):
 <suite>

10

 Inheritance

Inheritance is a method for relating classes together.

A common use: Two similar classes differ in their degree of specialization.

The specialized class may have the same attributes as the general class,
along with some special-case behavior.

class <name>(<base class>):
 <suite>

Conceptually, the new subclass "shares" attributes with its base class.

10

 Inheritance

Inheritance is a method for relating classes together.

A common use: Two similar classes differ in their degree of specialization.

The specialized class may have the same attributes as the general class,
along with some special-case behavior.

class <name>(<base class>):
 <suite>

Conceptually, the new subclass "shares" attributes with its base class.

The subclass may override certain inherited attributes.

10

 Inheritance

Inheritance is a method for relating classes together.

A common use: Two similar classes differ in their degree of specialization.

The specialized class may have the same attributes as the general class,
along with some special-case behavior.

class <name>(<base class>):
 <suite>

Conceptually, the new subclass "shares" attributes with its base class.

The subclass may override certain inherited attributes.

Using inheritance, we implement a subclass by specifying its differences
from the the base class.

10

Inheritance Example

A CheckingAccount is a specialized type of Account.

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

 class CheckingAccount(Account):

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

 class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

 class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

 class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

 class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

 class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

11

Inheritance Example

A CheckingAccount is a specialized type of Account.

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

 class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

11

Looking Up Attribute Names on Classes

Base class attributes aren't copied into subclasses!

12

Looking Up Attribute Names on Classes

To look up a name in a class.

Base class attributes aren't copied into subclasses!

12

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

Base class attributes aren't copied into subclasses!

12

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

Base class attributes aren't copied into subclasses!

12

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__

Base class attributes aren't copied into subclasses!

12

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01

Base class attributes aren't copied into subclasses!

12

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20

Base class attributes aren't copied into subclasses!

12

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Base class attributes aren't copied into subclasses!

12

Looking Up Attribute Names on Classes

To look up a name in a class.

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Base class attributes aren't copied into subclasses!

12

(Demo)

Object-Oriented Design

Designing for Inheritance

 class CheckingAccount(Account):

 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01

 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

14

Designing for Inheritance

Don't repeat yourself; use existing implementations.

 class CheckingAccount(Account):

 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01

 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

14

Designing for Inheritance

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via class objects.

 class CheckingAccount(Account):

 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01

 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

14

Designing for Inheritance

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via class objects.

Look up attributes on instances whenever possible.

 class CheckingAccount(Account):

 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01

 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

14

Designing for Inheritance

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via class objects.

Look up attributes on instances whenever possible.

 class CheckingAccount(Account):

 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01

 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

Attribute look-up
on base class

14

Designing for Inheritance

Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via class objects.

Look up attributes on instances whenever possible.

 class CheckingAccount(Account):

 """A bank account that charges for withdrawals."""

 withdraw_fee = 1

 interest = 0.01

 def withdraw(self, amount):

 return Account.withdraw(self, amount + self.withdraw_fee)

Attribute look-up
on base class

Preferred to CheckingAccount.withdraw_fee
to allow for specialized accounts

14

Inheritance and Composition

15

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor.

15

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor.

Inheritance is best for representing is-a relationships.

15

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

15

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

15

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.

15

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.

E.g., a bank has a collection of bank accounts it manages.

15

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.

E.g., a bank has a collection of bank accounts it manages.

So, A bank has a list of accounts as an attribute.

15

Inheritance and Composition

Object-oriented programming shines when we adopt the metaphor.

Inheritance is best for representing is-a relationships.

E.g., a checking account is a specific type of account.

So, CheckingAccount inherits from Account.

Composition is best for representing has-a relationships.

E.g., a bank has a collection of bank accounts it manages.

So, A bank has a list of accounts as an attribute.

15

(Demo)

Multiple Inheritance

Multiple Inheritance

17

Multiple Inheritance

 class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

17

Multiple Inheritance

 class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.

17

Multiple Inheritance

 class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.

CleverBank marketing executive wants:

17

Multiple Inheritance

 class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.

CleverBank marketing executive wants:
• Low interest rate of 1%

17

Multiple Inheritance

 class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.

CleverBank marketing executive wants:
• Low interest rate of 1%
• A $1 fee for withdrawals

17

Multiple Inheritance

 class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.

CleverBank marketing executive wants:
• Low interest rate of 1%
• A $1 fee for withdrawals
• A $2 fee for deposits

17

Multiple Inheritance

 class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

A class may inherit from multiple base classes in Python.

CleverBank marketing executive wants:
• Low interest rate of 1%
• A $1 fee for withdrawals
• A $2 fee for deposits
• A free dollar when you open your account

17

Multiple Inheritance

 class SavingsAccount(Account):
 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

A class may inherit from multiple base classes in Python.

CleverBank marketing executive wants:
• Low interest rate of 1%
• A $1 fee for withdrawals
• A $2 fee for deposits
• A free dollar when you open your account

17

Multiple Inheritance

A class may inherit from multiple base classes in Python.

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

18

Multiple Inheritance

A class may inherit from multiple base classes in Python.

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")

18

Multiple Inheritance

A class may inherit from multiple base classes in Python.

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

18

Multiple Inheritance

A class may inherit from multiple base classes in Python.

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

Instance attribute

18

Multiple Inheritance

A class may inherit from multiple base classes in Python.

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

>>> such_a_deal.deposit(20)

19

Instance attribute

18

Multiple Inheritance

A class may inherit from multiple base classes in Python.

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

>>> such_a_deal.deposit(20)

19

Instance attribute

SavingsAccount method

18

Multiple Inheritance

A class may inherit from multiple base classes in Python.

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

>>> such_a_deal.deposit(20)

19

>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

18

Multiple Inheritance

A class may inherit from multiple base classes in Python.

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

>>> such_a_deal.deposit(20)

19

>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

CheckingAccount method

18

Resolving Ambiguous Class Attribute Names

19

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

19

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

19

>>> such_a_deal = AsSeenOnTVAccount("John")

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

19

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

19

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

Instance attribute

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

19

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

>>> such_a_deal.deposit(20)

19

Instance attribute

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

19

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

>>> such_a_deal.deposit(20)

19

Instance attribute

SavingsAccount method

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

19

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

>>> such_a_deal.deposit(20)

19

>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

Resolving Ambiguous Class Attribute Names

Account

CheckingAccount SavingsAccount

AsSeenOnTVAccount

19

>>> such_a_deal = AsSeenOnTVAccount("John")

>>> such_a_deal.balance

1

>>> such_a_deal.deposit(20)

19

>>> such_a_deal.withdraw(5)

13

Instance attribute

SavingsAccount method

CheckingAccount method

Complicated Inheritance

Biological Inheritance

21

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

Mom Dad

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

Mom Dad

You

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

Aunt Mom Dad

You

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

Aunt Mom Dad

You

Half

some_guy

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

Aunt Mom Dad

You

Half

some_guy

Half Cousin

some_other_guy

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

Aunt Mom Dad

You

Half

Half Cousin

some_other_guy

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

AuntDouble Mom Dad

You

Half

Half Cousin

some_other_guy

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

AuntDouble Mom Dad

You

Half

Half Cousin

some_other_guy

Double

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

AuntDouble Mom Dad

You

Half Double Half Uncle

Half Cousin

some_other_guy

Double

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

AuntDouble Mom Dad

You

Half Double Half Uncle

Half CousinDouble

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

AuntDouble

Quadruple

Mom Dad

You

Half Double Half Uncle

Half Cousin

Biological Inheritance

21

Grandma Grandpa GramammyGrandaddy

AuntDouble

Quadruple

Mom Dad

You

Half Double Half Uncle

Half Cousin

Moral of the story: Inheritance can be complicated, so don't overuse it!

