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Announcements

• Homework 5 is due Tuesday 10/15 @ 11:59pm

• Project 3 is due Thursday 10/24 @ 11:59pm

• Midterm 2 is on Monday 10/28 7pm-9pm
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along with some special-case behavior.

class <name>(<base class>):
    <suite>
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Designing for Inheritance

    class CheckingAccount(Account):

        """A bank account that charges for withdrawals."""

        withdraw_fee = 1
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Don't repeat yourself; use existing implementations.

Attributes that have been overridden are still accessible via class objects.

Look up attributes on instances whenever possible.

    class CheckingAccount(Account):

        """A bank account that charges for withdrawals."""

        withdraw_fee = 1

        interest = 0.01

        def withdraw(self, amount):

            return Account.withdraw(self, amount + self.withdraw_fee)

Attribute look-up 
on base class

Preferred to CheckingAccount.withdraw_fee 
to allow for specialized accounts 
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Multiple Inheritance
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        def deposit(self, amount):
            return Account.deposit(self, amount - self.deposit_fee)
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Moral of the story: Inheritance can be complicated, so don't overuse it!


