61A Lecture 14

Friday, October 4

Mutable Functions

Persistent Local State Using Environments
Global frame func make_withdraw(balance)
make_withdraw

func withdraw(amount) [parent=f1]
withdraw

A function with a parent

£1: make_withdraw R
balance |50

withdraw T The parent contains local]

Return State

value

withdraw [parent=f1]

All calls to the amount |25
same function

Every call changes the J

Return
have the same value |73 balance
parent
withdraw [parent=f1]
amount |25
Return 50

value

Example: ht1p://q00.gl/cUCe9s

Announcements
+Homework 4 due Tuesday 10/8 @ 11:59pm.
+Project 2 due Thursday 10/10 @ 11:59pm.
<Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 1@am-1pm in Soda.
Topics: Data abstraction, sequences, and non-local assignment.
Please RSVP on Piazza!
+Guest lecture on Wednesday 10/9, Peter Norvig on Natural Language Processing in

No video (except a screencast)! Come to Wheeler.

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

Argument:
remaining balance 75
>>> withdraw(25) < second withdrawal of
Different 50 the same amount
return value!

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15) | where's this balance
35 stored?

Python.

of the function!

>>> withdraw = make_withdraw(100) <[within the parent frame} [A function has a body and

a parent environment

1

Reminder: Local Assignment

def percent_difference(x, y):
| difference = abs(x-y) Assignment binds name(s) to
return 100 * difference / x| yalue(s) in the first frame of
diff = percent_difference(40, 56) e @R EATETE:

Global frame func percent_difference(x, y)

percent_difference
percent_difference
x 40
y 50
difference |10
Execution rule for assignment statements:

1.Evaluate all expressions right of =, from left to right.

2.Bind the names on the left the resulting values in the first frame
of the current environment.

Example: http://qo0.ql/ixpgsZ

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"Return a withdraw function with a starting balance

def withdraw(amount):

Declare the name "balance" nonlocal at the top of
nonlocal balance < the body of the function in which it is re-assigned

if amount > balance:

return 'Insufficient funds'

balance = balance - amount Re-bind balance in the first non-local

return balance frame in which it was bound previously

return withdraw

(Demo)

The Effect of Nonlocal Statements

nonlocal <name>, <name>, ...

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame:of the current environment in which that name is bound.

Python Docs: an

"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

Names listed in a nonlocal statement must not collide with pre-existing
bindings in the local scope.

http://docs.python.org/release/3.1.3/reference/simple stnt: local-statenent

http://waw. python.ora/dev/peps/pep-3104,

Python Particulars

Python pre-computes which frame contains each name before executing the body of a
function.

Therefore, within the body of a function, all instances of a name must refer to the same

frame.

def make_withdraw(balance) :
def withdraw(amount):
if amount > balance:
return'Insufficient funds’
{ balance i

alance - amount '
return balance Local assignment
return withdraw

wd = make_withdraw(20)
wd(5)

UnboundLocalError: local variable 'balance’ referenced before assignment

Example: http://q00.ql/b0Vzce

Non-Local Assignment

The Many Meanings of Assignment Statements

Status

*No nonlocal statement
*"x" is not bound locally

Effect

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

*No nonlocal statement
*"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

enonlocal x
*"x" is bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which it is bound.

enonlocal x
*"x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

enonlocal x
e"x" is bound in a
non-local frame

*"x" also bound locally

SyntaxError: name 'x' is parameter and nonlocal

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame

make_withdraw_list

1: make_withdraw_list

withdraw ilo

func make_withdraw_list(balance)

{ st

func withdraw(amount) [parent=f1]

balance |100
withdraw,_|____«/

b ; ; N .
me-value binding [def make_withdraw_list(balance):
etum -

cannot change valve b = [balance]

withdraw [parent=f1]

amount 25 b[e] = b[e] - amount

def withdraw(amount):
if amount > b[e]:
return 'Insufficient funds'

return b[0]
return withdraw

withdraw = make_withdraw_list(100)
withdraw(25)

Example: http://qo0.qUyATyEZ

Multiple Mutable Functions

(Demo)

Referential Transparency, Lost

*Expressions are referentially transparent if substituting an expression with its value

does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

*Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

(Demo)

Sameness and Change
+As long as we never modify objects, we can regard a compound object to be precisely the
totality of its pieces.
*A rational number is just its numerator and denominator.
«This view is no longer valid in the presence of change.

*Now, a compound data object has an "identity" that is something more than the pieces of which
it is composed.

<A bank account is still "the same" bank account even if we change the balance by making a
withdrawal.

+Conversely, we could have two bank accounts that happen to have the same balance, but are
different objects.

John's Steven's
Account Account
$10 $10

