
61A Lecture 14

Friday, October 4

Announcements

2

Announcements

• Homework 4 due Tuesday 10/8 @ 11:59pm.

2

Announcements

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

2

Announcements

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

2

Announcements

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

Topics: Data abstraction, sequences, and non-local assignment.

2

Announcements

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

Topics: Data abstraction, sequences, and non-local assignment.

Please RSVP on Piazza!

2

Announcements

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

Topics: Data abstraction, sequences, and non-local assignment.

Please RSVP on Piazza!

• Guest lecture on Wednesday 10/9, Peter Norvig on Natural Language Processing in Python.

2

Announcements

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

Topics: Data abstraction, sequences, and non-local assignment.

Please RSVP on Piazza!

• Guest lecture on Wednesday 10/9, Peter Norvig on Natural Language Processing in Python.

No video (except a screencast)! Come to Wheeler.

2

Mutable Functions

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

4

A Function with Behavior That Varies Over Time

>>> withdraw(25)

Let's model a bank account that has a balance of $100

4

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

Let's model a bank account that has a balance of $100

4

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

Let's model a bank account that has a balance of $100

Argument:
amount to withdraw

4

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

4

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

4

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

Different
return value!

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

Different
return value!

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

Different
return value!

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

Different
return value!

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

Different
return value!

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

Different
return value!

Where's this balance
stored?

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw(100)

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

Different
return value!

Where's this balance
stored?

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw(100)

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

Different
return value!

Where's this balance
stored?

Within the parent frame
of the function!

4

Second withdrawal of
the same amount

A Function with Behavior That Varies Over Time

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw(100)

Let's model a bank account that has a balance of $100

Argument:
amount to withdrawReturn value:

remaining balance

Different
return value!

Where's this balance
stored?

Within the parent frame
of the function!

4

Second withdrawal of
the same amount

A function has a body and
a parent environment

Persistent Local State Using Environments

Example: http://goo.gl/cUC09s 5

Persistent Local State Using Environments

Example: http://goo.gl/cUC09s

A function with a parent
frame

5

Persistent Local State Using Environments

Example: http://goo.gl/cUC09s

A function with a parent
frame

The parent contains local
state

5

Persistent Local State Using Environments

Example: http://goo.gl/cUC09s

A function with a parent
frame

The parent contains local
state

Every call changes the
balance

5

Persistent Local State Using Environments

Example: http://goo.gl/cUC09s

A function with a parent
frame

The parent contains local
state

Every call changes the
balance

5

All calls to the
same function
have the same

parent

Reminder: Local Assignment

6Example: http://goo.gl/Wxpg5Z

Reminder: Local Assignment

Assignment binds name(s) to
value(s) in the first frame of

the current environment

6Example: http://goo.gl/Wxpg5Z

Reminder: Local Assignment

Assignment binds name(s) to
value(s) in the first frame of

the current environment

6Example: http://goo.gl/Wxpg5Z

Reminder: Local Assignment

Execution rule for assignment statements:

Assignment binds name(s) to
value(s) in the first frame of

the current environment

6Example: http://goo.gl/Wxpg5Z

Reminder: Local Assignment

Execution rule for assignment statements:

1.Evaluate all expressions right of =, from left to right.

2.Bind the names on the left the resulting values in the first frame
of the current environment.

Assignment binds name(s) to
value(s) in the first frame of

the current environment

6Example: http://goo.gl/Wxpg5Z

Non-Local Assignment & Persistent Local State

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

 return balance

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

 return balance

 return withdraw

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

 return balance

 return withdraw

Declare the name "balance" nonlocal at the top of
the body of the function in which it is re-assigned

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

 return balance

 return withdraw

Declare the name "balance" nonlocal at the top of
the body of the function in which it is re-assigned

Re-bind balance in the first non-local
frame in which it was bound previously

7

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

 return balance

 return withdraw

Declare the name "balance" nonlocal at the top of
the body of the function in which it is re-assigned

Re-bind balance in the first non-local
frame in which it was bound previously

7

(Demo)

Non-Local Assignment

The Effect of Nonlocal Statements

nonlocal <name>

9

The Effect of Nonlocal Statements

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame of the current environment in which that name is bound.

nonlocal <name>

9

The Effect of Nonlocal Statements

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame of the current environment in which that name is bound.

nonlocal <name>

Python Docs: an
"enclosing scope"

9

The Effect of Nonlocal Statements

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame of the current environment in which that name is bound.

nonlocal <name>, <name>, ...

Python Docs: an
"enclosing scope"

9

The Effect of Nonlocal Statements

From the Python 3 language reference:

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame of the current environment in which that name is bound.

nonlocal <name>, <name>, ...

Python Docs: an
"enclosing scope"

9

The Effect of Nonlocal Statements

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame of the current environment in which that name is bound.

nonlocal <name>, <name>, ...

Python Docs: an
"enclosing scope"

9

The Effect of Nonlocal Statements

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

Names listed in a nonlocal statement must not collide with pre-existing
bindings in the local scope.

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame of the current environment in which that name is bound.

nonlocal <name>, <name>, ...

Python Docs: an
"enclosing scope"

9

The Effect of Nonlocal Statements

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

Names listed in a nonlocal statement must not collide with pre-existing
bindings in the local scope.

http://docs.python.org/release/3.1.3/reference/simple_stmts.html#the-nonlocal-statement

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame of the current environment in which that name is bound.

nonlocal <name>, <name>, ...

Python Docs: an
"enclosing scope"

9

The Effect of Nonlocal Statements

http://www.python.org/dev/peps/pep-3104/

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

Names listed in a nonlocal statement must not collide with pre-existing
bindings in the local scope.

http://docs.python.org/release/3.1.3/reference/simple_stmts.html#the-nonlocal-statement

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame of the current environment in which that name is bound.

nonlocal <name>, <name>, ...

Python Docs: an
"enclosing scope"

9

The Many Meanings of Assignment Statements
x = 2

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

•No nonlocal statement
•"x" is bound locally

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

•nonlocal x
•"x" is bound in a non-local
frame

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

•nonlocal x
•"x" is bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which it is bound.

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

•nonlocal x
•"x" is not bound in a non-
local frame

•nonlocal x
•"x" is bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which it is bound.

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

•nonlocal x
•"x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

•nonlocal x
•"x" is bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which it is bound.

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

•nonlocal x
•"x" is bound in a
non-local frame
•"x" also bound locally

•nonlocal x
•"x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

•nonlocal x
•"x" is bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which it is bound.

10

The Many Meanings of Assignment Statements
x = 2

Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x" to object 2 in
the first frame of the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

•nonlocal x
•"x" is bound in a
non-local frame
•"x" also bound locally

SyntaxError: name 'x' is parameter and nonlocal

•nonlocal x
•"x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

•nonlocal x
•"x" is bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which it is bound.

10

Python Particulars

11Example: http://goo.gl/bOVzc6

Python Particulars

Python pre-computes which frame contains each name before executing the body of a
function.

11Example: http://goo.gl/bOVzc6

Python Particulars

Python pre-computes which frame contains each name before executing the body of a
function.

Therefore, within the body of a function, all instances of a name must refer to the same
frame.

11Example: http://goo.gl/bOVzc6

Python Particulars

Python pre-computes which frame contains each name before executing the body of a
function.

Therefore, within the body of a function, all instances of a name must refer to the same
frame.

11Example: http://goo.gl/bOVzc6

Python Particulars

Python pre-computes which frame contains each name before executing the body of a
function.

Therefore, within the body of a function, all instances of a name must refer to the same
frame.

Local assignment

11Example: http://goo.gl/bOVzc6

Python Particulars

Python pre-computes which frame contains each name before executing the body of a
function.

Therefore, within the body of a function, all instances of a name must refer to the same
frame.

Local assignment

11Example: http://goo.gl/bOVzc6

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

12Example: http://goo.gl/y4TyFZ

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Name-value binding
cannot change

12Example: http://goo.gl/y4TyFZ

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Name-value binding
cannot change

Mutable value
can change

12Example: http://goo.gl/y4TyFZ

Multiple Mutable Functions

(Demo)

Sameness and Change

14

Sameness and Change

•As long as we never modify objects, we can regard a compound object to be precisely the
totality of its pieces.

14

Sameness and Change

•As long as we never modify objects, we can regard a compound object to be precisely the
totality of its pieces.

•A rational number is just its numerator and denominator.

14

Sameness and Change

•As long as we never modify objects, we can regard a compound object to be precisely the
totality of its pieces.

•A rational number is just its numerator and denominator.

•This view is no longer valid in the presence of change.

14

Sameness and Change

•As long as we never modify objects, we can regard a compound object to be precisely the
totality of its pieces.

•A rational number is just its numerator and denominator.

•This view is no longer valid in the presence of change.

•Now, a compound data object has an "identity" that is something more than the pieces of which
it is composed.

14

Sameness and Change

•As long as we never modify objects, we can regard a compound object to be precisely the
totality of its pieces.

•A rational number is just its numerator and denominator.

•This view is no longer valid in the presence of change.

•Now, a compound data object has an "identity" that is something more than the pieces of which
it is composed.

•A bank account is still "the same" bank account even if we change the balance by making a
withdrawal.

14

Sameness and Change

•As long as we never modify objects, we can regard a compound object to be precisely the
totality of its pieces.

•A rational number is just its numerator and denominator.

•This view is no longer valid in the presence of change.

•Now, a compound data object has an "identity" that is something more than the pieces of which
it is composed.

•A bank account is still "the same" bank account even if we change the balance by making a
withdrawal.

•Conversely, we could have two bank accounts that happen to have the same balance, but are
different objects.

14

Sameness and Change

•As long as we never modify objects, we can regard a compound object to be precisely the
totality of its pieces.

•A rational number is just its numerator and denominator.

•This view is no longer valid in the presence of change.

•Now, a compound data object has an "identity" that is something more than the pieces of which
it is composed.

•A bank account is still "the same" bank account even if we change the balance by making a
withdrawal.

•Conversely, we could have two bank accounts that happen to have the same balance, but are
different objects.

John's
Account

$10

14

Sameness and Change

•As long as we never modify objects, we can regard a compound object to be precisely the
totality of its pieces.

•A rational number is just its numerator and denominator.

•This view is no longer valid in the presence of change.

•Now, a compound data object has an "identity" that is something more than the pieces of which
it is composed.

•A bank account is still "the same" bank account even if we change the balance by making a
withdrawal.

•Conversely, we could have two bank accounts that happen to have the same balance, but are
different objects.

John's
Account

$10

Steven's
Account

$10

14

Referential Transparency, Lost

15

Referential Transparency, Lost

•Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

15

Referential Transparency, Lost

•Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

15

Referential Transparency, Lost

•Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

15

Referential Transparency, Lost

•Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

15

Referential Transparency, Lost

•Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

•Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

15

Referential Transparency, Lost

•Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

•Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

15

Referential Transparency, Lost

•Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

•Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

15

Referential Transparency, Lost

•Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

•Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

15

(Demo)

