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Announcements

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

Topics: Data abstraction, sequences, and non-local assignment.

Please RSVP on Piazza! 

• Guest lecture on Wednesday 10/9, Peter Norvig on Natural Language Processing in Python.

No video (except a screencast)! Come to Wheeler.
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>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
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>>> withdraw(15)
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Example: http://goo.gl/cUC09s
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Reminder: Local Assignment

Execution rule for assignment statements:

1.Evaluate all expressions right of =, from left to right.

2.Bind the names on the left the resulting values in the first frame 
of the current environment.

Assignment binds name(s) to 
value(s) in the first frame of 

the current environment

6Example: http://goo.gl/Wxpg5Z
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def make_withdraw(balance):

    """Return a withdraw function with a starting balance."""

    def withdraw(amount):
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        if amount > balance:

            return 'Insufficient funds'
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    return withdraw

Declare the name "balance" nonlocal at the top of 
the body of the function in which it is re-assigned

Re-bind balance in the first non-local 
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Mutable values can be changed without a nonlocal statement.
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cannot change
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