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Guest lecture on Wednesday 10/9, Peter Norvig on Natural Language Processing in Python.
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String Literals Have Three Forms

>>> 'T am string!'
'T am string!'

>>> "l've got an apostrophe” Single-quoted and double-quoted
I've got an apostrophe strings are equivalent

>>> RYE!

AN

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""

'The Zen of Python\nclaims, Readability counts.\nRead more: import this."

A backslash "escapes" the

"Line feed" character
following character represents a new line
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>>> city = 'Berkeley’
>>> len(city)
8

=== city[3] An element of a string is itself a string,
k but with only one character!

Length. A sequence has a finite length.
Element selection. A sequence has an element corresponding to any non-

negative integer index less than its length, starting at @ for the first
element.

(Demo)



String Membership Differs from Other Sequence Types



String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings



String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"

True
>>> 234 in (1, 2, 3, 4, 5)
False



String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"

True
>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters



String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"

True
>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

The count method also matches substrings



String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True

>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

The count method also matches substrings

>>> 'Mississippi'.count('i")

4

>>> 'Mississippi'.count('issi')
1



String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True

>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

The count method also matches substrings

>>> 'Mississippi'.count('i")

4

>>> 'Mississippi'.count('issi')
1

the number of
non-overlapping
occurrences of a
substring




String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True

>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

The count method also matches substrings

>>> 'Mississippi'.count('i")

4

>>> 'Mississippi'.count('issi')
1

the number of
non-overlapping
occurrences of a
substring




Encoding Strings



Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

5

6

7

8

9

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

FF

CR

SO

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

RS

us

+

O| V|~

v ||

>

NGO OLyLBAEWINEO

T

200 |0 || -

S|T|A|@IN

njloln|lojlw| #*

+ || H|O|~|H

clo|jc|im|uU| o

<|=h|<|T|O |2

T|Q|IE|O|N]| -

X|>|X|=x<|00|—~

<|F-|<|H|O|~-—

N|w. | NG| -

R R]| -

—|~|~||A

|3 |—=|=]|1

DEL




Representing Strings: the ASCII Standard

3 bits

NGO OLyLBAEWINEO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

5

6

7

8

9

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

FF

CR

SO

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

RS

us

+

O| V|~

v ||

T

2010 |O0|> |

S|T|A|@IN

njloln|lojlw| #*

+ || H|O|~|H

clo|jc|im|uU| o

<|=h|<|T|O |2

TN

X|>|X|=x<|00|—~

<|F-|<|H|O|~-—

N|w. | NG| -

R R]| -

—|~|~||A

|3 |—=|=]|1

DEL




Representing Strings: the ASCII Standard

3 bits

NGO OLyLBAEWINEO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
NUL | SOH | STX |ETX | EOT | ENQ [ACK [BEL| BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN |ETB |[CAN | EM |SUB|ESC| FS | GS | RS | US

! n # $ % & ' ( ) * + ’ - /

0 1 2 3 4 5 6 7 8 9 : H < = > ?

@| A| B C D E F G H I J K L M N 0

P Q| R S T U VIW]| X Y| Z [ \ 1 Al -

~lal|lb|lc|ld|e|f|9]|h|i1]|Jj|k]|]1T]|m]|]n]|oOo

P q r s t u v w X y z { | } ~ | DEL

16 columns: 4 bits




Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

©,1,2,3,4,5,6,7,;8,;9;A;B,;C,;D,E,F

[ o[nuL|[soH|sTx [ETX [EOT [ENQ [ACK|BEL| BS [ HT [ LF [ VT [ FF [ cR [ so [ sI
9| 1|pLe[pc1[pc2[pc3[pca [NAK [sYN[ETB[cAN | EM [suB[ESC| FS [ Gs [ Rs [ us
a2 L[« | # | $ % |&] | (L) x|+ [|- /
m{3fel1]2]3[al5s5]6]7]s[o]:1i]<[=1>1-¢2
~lafe[A[B]c|[DJEJFJa]H]TI]a]k][L][mM][N]oO
SIS|PlQ|R|[S|[TJUfVv]w]|X|[Y]Z]TL|[\N]T1]~]|-
“lel ~Talb|[cl[d|lel[f[o[nh[ililk][1v]m]n]o
17l par s t|u[v|[w ][ x|y [z ]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code




Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

©,1,2,3,4,5,6,7,;8,;9;A;B,;C,;D,E,F

[ o[nuL|[soH|sTx [ETX [EOT [ENQ [ACK|BEL| BS [ HT [ LF [ VT [ FF [ cR [ so [ sI
9| 1|pLe[pc1[pc2[pc3[pca [NAK [sYN[ETB[cAN | EM [suB[ESC| FS [ Gs [ Rs [ us
a2 e [ # 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3[a]5]6[7[s8[o:[:i][<[=]>]-¢2
~lale|lAalBlc]Dp|lE[F]a|H][I[a]k]L][m][N]oO
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w ][ x|y [z ]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code

® Rows indexed 2-5 are a useful 6-bit (64 element) subset




Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

©,1,2,3,4,5,6,7,;8,;9;A;B,;C,;D,E,F

[ o[nuL|[soH|sTx [ETX [EOT [ENQ [ACK|BEL| BS [ HT [ LF [ VT [ FF [ cR [ so [ sI
9| 1|pLe[pc1[pc2[pc3[pca [NAK [sYN[ETB[cAN | EM [suB[ESC| FS [ Gs [ Rs [ us
a2 e [ # 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3[a]5]6[7[s8[o:[:i][<[=]>]-¢2
~lale|lAalBlc]Dp|lE[F]a|H][I[a]k]L][m][N]oO
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w ][ x|y [z ]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code

® Rows indexed 2-5 are a useful 6-bit (64 element) subset

e Control characters were designed for transmission




Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

"Line feed" (\n) ]
C D E F

ASCII Code Chart
0 1 2 3 4 5 6 7 8 9 A B

T o|nuL]soH|sTx[ETX|EOT [ENQ[ACK[BEL| BS | HT [ LF'| vT [ FF [ cR | Sso | sI
@1 1]pLe|pc1|pc2|pc3|pca [NAK [sYN[ETB [caN | EM [SuB|ESC| Fs [ Gs [ Rs | us
a2 e [ # 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3as]e]7[s]ol:]:i[<[=[>]-¢?
~lafe@[A[B]c[DJEJFJa[H]TI]Ia[Kk]L]M]N]O
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w ][ x|y [z ]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element) subset
e Control characters were designed for transmission



Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

p

\”Bell" (\a) SCIT Code Chart { "Line feed" (\n) ]
©,1,2,3,4,5 7,8,9 ,A[/B,C,;D,E,F
T o|nuL]soH|sTx[ETX|EOT [ENQ [ACKTBEL| BS | HT | LF'| VT [ FF [ cR | so | sI
@1 1]pLe|pc1|pc2|pc3|pca [NAK [sYN[ETB [caN | EM [SuB|ESC| Fs [ Gs [ Rs | us
a2 e [ # 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3as]e]7[s]ol:]:i[<[=[>]-¢?
~lafe@[A[B]c[DJEJFJa[H]TI]Ia[Kk]L]M]N]O
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w ][ x|y [z ]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element) subset
e Control characters were designed for transmission



Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

p

\”Bell" (\a) SCIT Code Chart { "Line feed" (\n) ]
©,1,2,3,4,5 7,8,9 ,A[/B,C,;D,E,F
T o|nuL]soH|sTx[ETX|EOT [ENQ [ACKTBEL| BS | HT | LF'| VT [ FF [ cR | so | sI
@1 1]pLe|pc1|pc2|pc3|pca [NAK [sYN[ETB [caN | EM [SuB|ESC| Fs [ Gs [ Rs | us
a2 e [ # 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3as]e]7[s]ol:]:i[<[=[>]-¢?
~lafe@[A[B]c[DJEJFJa[H]TI]Ia[Kk]L]M]N]O
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w ][ x|y [z ]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code

* Rows indexed 2-5 are a useful 6-bit (64 element) subset

e Control characters were designed for transmission
(Demo)



Representing Strings: the Unicode Standard



Representing Strings: the Unicode Standard

B | B B | B
8071 8072 8073 8074 8075 8076 8077 8078
iR A AR B AR | R
817 8172 8173 8174 8175 8176 8177 8178
AR | G| | B B
8271 8272 8273 8274 8275 8276 8217 8278
B k2| 0h A | 22
8371 8372 8373 8374 8375 8376 8377 8378
A AV AV AR Ik




Representing Strings: the Unicode Standard

® 109,000 characters

B | B B | B
8071 8072 8073 8074 8075 8076 8077 8078
iR A AR B AR | R
817 8172 8173 8174 8175 8176 8177 8178
AR | G| | B B
8271 8272 8273 8274 8275 8276 8217 8278
B k2| 0h A | 22
8371 8372 8373 8374 8375 8376 8377 8378
A AV AV AR Ik
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® 109,000 characters

® 93 scripts (organized)
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N
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AT AV IE Ak
o | 7 5} K| = IO
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® 93 scripts (organized)

e Enumeration of character properties,
such as case
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® 93 scripts (organized)
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such as case
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Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

B

8077

—

F
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A 5 B (B RE R

iR o | b B | L |

S BL | B

8271 8273 8274 8275 8276 8277 8278
—F~ - — - ——- —

z AR I R

8371 8373 8374 8375 8376 8377 8378

4 A A A A

http://ian-a rt.com/unicode




Representing Strings: the Unicode Standard

® 109,000 characters e

A 5 B (B RE R

=W
® 93 scripts (organized) sort
| - it

e Enumeration of character properties,
such as case an
* Supports bidirectional display order EE
* A canonical name for every character %g
2
[ A%

http: ian-albert.com/unicode_chart/unichart-chinese

U+0058 LATIN CAPITAL LETTER X
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® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

* A canonical name for every character
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U+0058 LATIN CAPITAL LETTER X

©

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE (Demo)
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Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0
00000001 1
00000010 2
00000011 3

bytes integers

Variable-length encoding: integers vary in the number of bytes required to encode them.
In Python: string length is measured in characters, bytes length in bytes.

(Demo)
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Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

map fib: e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
A A A A

filter even: Q, 2, 8, 34,

accumulate sum: ., ., ., ., =44
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Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes

capitalized word.

enumerate words:

filter capitalized:

map first:

accumulate tuple:

‘University’',
VAN

‘University’',

Iofl’

'California’,
VAN

'California‘',

the first letter of each

'Berkeley’

A

'Berkeley’
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Apply a function to each element of the sequence

>>> glternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

The returned value offmap}is an iterable map object

A constructor for the
built-in map type

The returned value of filter is an iterable filter object

(Demo)
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Ilterable Values and Accumulation

Iterable objects give access to their elements in order.
Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements
sum Return the sum of the elements

min Return the minimum of the elements

max Return the maximum of the elements

For statements also operate on iterable values.
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Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul
>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))
120

First argument: Second argument: an
A two-argument function iterable object

Similar to accumulate from Homework 2, but with iterable objects.
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e Evaluates to an iterable object.
e<iter exp> is evaluated when the generator expression is evaluated.

e Remaining expressions are evaluated when elements are accessed.

Short version: (<map exp> for <name> in <iter exp>)
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