61A Lecture 13

Wednesday, October 2

Announcements

Announcements

Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

Announcements

Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

Announcements

Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.
Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

Homework 4 due Tuesday 10/8 @ 11:59pm.

Announcements

Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.
Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.
Homework 4 due Tuesday 10/8 @ 11:59pm.

Project 2 due Thursday 10/10 @ 11:59pm.

Announcements

Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.
Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.
Homework 4 due Tuesday 10/8 @ 11:59pm.
Project 2 due Thursday 10/10 @ 11:59pm.

Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 1@am-1pm in Soda.

Announcements

Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.
Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.
Homework 4 due Tuesday 10/8 @ 11:59pm.
Project 2 due Thursday 10/10 @ 11:59pm.

Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 1@am-1pm in Soda.

Topics: Data abstraction, sequences, and non-local assignment.

Announcements

Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.
Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.
Homework 4 due Tuesday 10/8 @ 11:59pm.
Project 2 due Thursday 10/10 @ 11:59pm.

Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 1@am-1pm in Soda.
Topics: Data abstraction, sequences, and non-local assignment.

Please RSVP on Piazza!

Announcements

Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

Homework 4 due Tuesday 10/8 @ 11:59pm.

Project 2 due Thursday 10/10 @ 11:59pm.

Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 1@am-1pm in Soda.
Topics: Data abstraction, sequences, and non-local assignment.

Please RSVP on Piazza!

Guest lecture on Wednesday 10/9, Peter Norvig on Natural Language Processing in Python.

Strings

Strings are an Abstraction

Strings are an Abstraction

Representing data:

'200' '1.2e-5" 'False’ (1, 2)"

Strings are an Abstraction

Representing data:

'200' '1.2e-5" 'False’ (1, 2)°

Representing language:

"""“"And, as imagination bodies forth
The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing

A local habitation and a name.

Strings are an Abstraction

Representing data:

'200' '1.2e-5" 'False’ (1, 2)°

Representing language:

"""“"And, as imagination bodies forth
The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing

A local habitation and a name.

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)

Strings are an Abstraction

Representing data:

'200' '1.2e-5" 'False’ (1, 2)°

Representing language:

"""“"And, as imagination bodies forth
The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing

A local habitation and a name.

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)

(Demo)

String Literals Have Three Forms

>>> 'T am string!'
'T am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> ' RyF!

N

String Literals Have Three Forms

>>> 'T am string!'
'T am string!'

>>> "l've got an apostrophe” Single-quoted and double-quoted
I've got an apostrophe strings are equivalent

>>> ' RyF!

N

String Literals Have Three Forms

>>> 'T am string!'
'T am string!'

>>> "I've got an apostrophe"

"I've got an apostrophe"

>>> RYE!
R

>>> """The Zen of Python
claims, Readability counts

Read more: import this."""

'The Zen of Python\nclaims,

Single—-quoted and double-quoted
strings are equivalent

Readability counts.\nRead more: import this.'

String Literals Have Three Forms

>>> 'T am string!'
'T am string!'

>>> "l've got an apostrophe” Single-quoted and double-quoted
I've got an apostrophe strings are equivalent

>>> RYE!

AN

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""

A

A backslash "escapes" the
following character

'The Zen of Pythonﬁhclaims, Readability counts.\nRead more: import this.'

String Literals Have Three Forms

>>> 'T am string!'
'T am string!'

>>> "l've got an apostrophe” Single-quoted and double-quoted
I've got an apostrophe strings are equivalent

>>> RYE!

AN

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""

'The Zen of Python\nclaims, Readability counts.\nRead more: import this."

A backslash "escapes" the

"Line feed" character
following character represents a new line

Strings are Sequences

Strings are Sequences

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-
negative integer index less than its length, starting at @ for the first

element.

Strings are Sequences

>>> city = 'Berkeley
>>> len(city)

8

>>> city[3]

Ikl

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-
negative integer index less than its length, starting at @ for the first

element.

Strings are Sequences

>>> city = 'Berkeley’
>>> len(city)
8

=== city[3] An element of a string is itself a string,
k but with only one character!

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-
negative integer index less than its length, starting at @ for the first

element.

Strings are Sequences

>>> city = 'Berkeley’
>>> len(city)
8

=== city[3] An element of a string is itself a string,
k but with only one character!

Length. A sequence has a finite length.
Element selection. A sequence has an element corresponding to any non-

negative integer index less than its length, starting at @ for the first
element.

(Demo)

String Membership Differs from Other Sequence Types

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"

True
>>> 234 in (1, 2, 3, 4, 5)
False

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"

True
>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"

True
>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

The count method also matches substrings

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True

>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

The count method also matches substrings

>>> 'Mississippi'.count('i")

4

>>> 'Mississippi'.count('issi')
1

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True

>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

The count method also matches substrings

>>> 'Mississippi'.count('i")

4

>>> 'Mississippi'.count('issi')
1

the number of
non-overlapping
occurrences of a
substring

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True

>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

The count method also matches substrings

>>> 'Mississippi'.count('i")

4

>>> 'Mississippi'.count('issi')
1

the number of
non-overlapping
occurrences of a
substring

Encoding Strings

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

5

6

7

8

9

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

FF

CR

SO

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

RS

us

+

O| V|~

v ||

>

NGO OLyLBAEWINEO

T

200 |0 || -

S|T|A|@IN

njloln|lojlw| #*

+ || H|O|~|H

clo|jc|im|uU| o

<|=h|<|T|O |2

T|Q|IE|O|N]| -

X|>|X|=x<|00|—~

<|F-|<|H|O|~-—

N|w. | NG| -

R R]| -

—|~|~||A

|3 |—=|=]|1

DEL

Representing Strings: the ASCII Standard

3 bits

NGO OLyLBAEWINEO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

5

6

7

8

9

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

FF

CR

SO

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

RS

us

+

O| V|~

v ||

T

2010 |O0|> |

S|T|A|@IN

njloln|lojlw| #*

+ || H|O|~|H

clo|jc|im|uU| o

<|=h|<|T|O |2

TN

X|>|X|=x<|00|—~

<|F-|<|H|O|~-—

N|w. | NG| -

R R]| -

—|~|~||A

|3 |—=|=]|1

DEL

Representing Strings: the ASCII Standard

3 bits

NGO OLyLBAEWINEO

8 rows:

American Standard Code for Information Interchange

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
NUL | SOH | STX |ETX | EOT | ENQ [ACK [BEL| BS | HT | LF | VT | FF | CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN |ETB |[CAN | EM |SUB|ESC| FS | GS | RS | US

! n # $ % & ' () * + ’ - /

0 1 2 3 4 5 6 7 8 9 : H < = > ?

@| A| B C D E F G H I J K L M N 0

P Q| R S T U VIW]| X Y| Z [\ 1 Al -

~lal|lb|lc|ld|e|f|9]|h|i1]|Jj|k]|]1T]|m]|]n]|oOo

P q r s t u v w X y z { | } ~ | DEL

16 columns: 4 bits

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

©,1,2,3,4,5,6,7,;8,;9;A;B,;C,;D,E,F

[o[nuL|[soH|sTx [ETX [EOT [ENQ [ACK|BEL| BS [HT [LF [VT [FF [cR [so [sI
9| 1|pLe[pc1[pc2[pc3[pca [NAK [sYN[ETB[cAN | EM [suB[ESC| FS [Gs [Rs [us
a2 L[« | # | $ % |&] | (L) x|+ [|- /
m{3fel1]2]3[al5s5]6]7]s[o]:1i]<[=1>1-¢2
~lafe[A[B]c|[DJEJFJa]H]TI]a]k][L][mM][N]oO
SIS|PlQ|R|[S|[TJUfVv]w]|X|[Y]Z]TL|[\N]T1]~]|-
“lel ~Talb|[cl[d|lel[f[o[nh[ililk][1v]m]n]o
17l par s t|u[v|[w][x|y [z]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

©,1,2,3,4,5,6,7,;8,;9;A;B,;C,;D,E,F

[o[nuL|[soH|sTx [ETX [EOT [ENQ [ACK|BEL| BS [HT [LF [VT [FF [cR [so [sI
9| 1|pLe[pc1[pc2[pc3[pca [NAK [sYN[ETB[cAN | EM [suB[ESC| FS [Gs [Rs [us
a2 e [# 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3[a]5]6[7[s8[o:[:i][<[=]>]-¢2
~lale|lAalBlc]Dp|lE[F]a|H][I[a]k]L][m][N]oO
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w][x|y [z]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code

® Rows indexed 2-5 are a useful 6-bit (64 element) subset

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

ASCII Code Chart

©,1,2,3,4,5,6,7,;8,;9;A;B,;C,;D,E,F

[o[nuL|[soH|sTx [ETX [EOT [ENQ [ACK|BEL| BS [HT [LF [VT [FF [cR [so [sI
9| 1|pLe[pc1[pc2[pc3[pca [NAK [sYN[ETB[cAN | EM [suB[ESC| FS [Gs [Rs [us
a2 e [# 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3[a]5]6[7[s8[o:[:i][<[=]>]-¢2
~lale|lAalBlc]Dp|lE[F]a|H][I[a]k]L][m][N]oO
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w][x|y [z]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code

® Rows indexed 2-5 are a useful 6-bit (64 element) subset

e Control characters were designed for transmission

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

"Line feed" (\n)]
C D E F

ASCII Code Chart
0 1 2 3 4 5 6 7 8 9 A B

T o|nuL]soH|sTx[ETX|EOT [ENQ[ACK[BEL| BS | HT [LF'| vT [FF [cR | Sso | sI
@1 1]pLe|pc1|pc2|pc3|pca [NAK [sYN[ETB [caN | EM [SuB|ESC| Fs [Gs [Rs | us
a2 e [# 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3as]e]7[s]ol:]:i[<[=[>]-¢?
~lafe@[A[B]c[DJEJFJa[H]TI]Ia[Kk]L]M]N]O
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w][x|y [z]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element) subset
e Control characters were designed for transmission

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

p

\”Bell" (\a) SCIT Code Chart { "Line feed" (\n)]
©,1,2,3,4,5 7,8,9 ,A[/B,C,;D,E,F
T o|nuL]soH|sTx[ETX|EOT [ENQ [ACKTBEL| BS | HT | LF'| VT [FF [cR | so | sI
@1 1]pLe|pc1|pc2|pc3|pca [NAK [sYN[ETB [caN | EM [SuB|ESC| Fs [Gs [Rs | us
a2 e [# 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3as]e]7[s]ol:]:i[<[=[>]-¢?
~lafe@[A[B]c[DJEJFJa[H]TI]Ia[Kk]L]M]N]O
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w][x|y [z]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code
* Rows indexed 2-5 are a useful 6-bit (64 element) subset
e Control characters were designed for transmission

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

p

\”Bell" (\a) SCIT Code Chart { "Line feed" (\n)]
©,1,2,3,4,5 7,8,9 ,A[/B,C,;D,E,F
T o|nuL]soH|sTx[ETX|EOT [ENQ [ACKTBEL| BS | HT | LF'| VT [FF [cR | so | sI
@1 1]pLe|pc1|pc2|pc3|pca [NAK [sYN[ETB [caN | EM [SuB|ESC| Fs [Gs [Rs | us
a2 e [# 8 [% & | Cl)[*x]|+]"]- /
mi3le[1]2]3as]e]7[s]ol:]:i[<[=[>]-¢?
~lafe@[A[B]c[DJEJFJa[H]TI]Ia[Kk]L]M]N]O
SI5fPlQ|R|[Ss|TJU|[Vv]w]|[X|[Y]Z]T|[\N]T]A~]-
“lel ~JTalb|[cl[d|lel[f[o[n[ililk]1v]m]n]o
17l par s t|u[v|[w][x|y [z]| {|1T]|7¥]~ [DEL

16 columns: 4 bits

* Layout was chosen to support sorting by character code

* Rows indexed 2-5 are a useful 6-bit (64 element) subset

e Control characters were designed for transmission
(Demo)

Representing Strings: the Unicode Standard

Representing Strings: the Unicode Standard

B | B B | B
8071 8072 8073 8074 8075 8076 8077 8078
iR A AR B AR | R
817 8172 8173 8174 8175 8176 8177 8178
AR | G| | B B
8271 8272 8273 8274 8275 8276 8217 8278
B k2| 0h A | 22
8371 8372 8373 8374 8375 8376 8377 8378
A AV AV AR Ik

Representing Strings: the Unicode Standard

® 109,000 characters

B | B B | B
8071 8072 8073 8074 8075 8076 8077 8078
iR A AR B AR | R
817 8172 8173 8174 8175 8176 8177 8178
AR | G| | B B
8271 8272 8273 8274 8275 8276 8217 8278
B k2| 0h A | 22
8371 8372 8373 8374 8375 8376 8377 8378
A AV AV AR Ik

Representing Strings: the Unicode Standard

® 109,000 characters

® 93 scripts (organized)

8071 8072 8073 8074 8075 8076 8077 8078
it | MR AR M | MR R
817 8174 8175 8176 8177 8178

N

8271 8272 8273

= H | 23 | A | far 7.

7. TN 7

8371 8372 8373 8374 8375 8376 8377 8378
- —+—- —— —+—- —= P ——
AT AV IE Ak
o | 7 5} K| = IO

http://ian-albert.com

-

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

8074 8075 8076 8077 8078
MR R B | e | s
8174 8175 8176 8177 8178

5 |

http://ian-albert.com

-

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

® Supports bidirectional display order

B e | B (BB BE e | k| S
=N o | HH | BH B
8071 8072 8073 8074 8075 8076 8077 8078
R | PR | R | M |
8171 8172 8173 8174 8175 8176 8177 8178
ER | R R B B |
S L5 L=

8271 8272 8273 8274 8275 8276 8277 8278
g :':E:_ J” 'f /r' L
= B2 || & |4

8371 8372 8373 8374 8375 8376 8377 8378
b g e = —- 45 | K- = = =
3 ﬁg B | R | %% | s | B |
o | 7 A | K| T o

http://ian-albert.com/unicode_chart/unichart-chinese. jpg

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

B

8077

—

F

8177

A 5 B (B RE R

iR o | b B | L |

S BL | B

8271 8273 8274 8275 8276 8277 8278
—F~ - — - ——- —

z AR I R

8371 8373 8374 8375 8376 8377 8378

4 A A A A

http://ian-a rt.com/unicode

Representing Strings: the Unicode Standard

® 109,000 characters e

A 5 B (B RE R

=W
® 93 scripts (organized) sort
| - it

e Enumeration of character properties,
such as case an
* Supports bidirectional display order EE
* A canonical name for every character %g
2
[A%

http: ian-albert.com/unicode_chart/unichart-chinese

U+0058 LATIN CAPITAL LETTER X

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

B | B B | B
8071 8072 8073 8074 8075 8076 8077 8078
it | R AR R Mk | I |
817 8172 8173 8174 8175 8176 8177 8178
AR FE R | 5RO
8271 8272 8273 8274 8275 8276 8277 8278
B k2| 0h A | 22
8371 8372 8373 8374 8375 8376 8377 8378
B R Rk | A | R

http://ian-albert.com/unicode_chart/unichart-chinese. jpg

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

U+0058 LATIN CAPITAL LETTER X
U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

B | B B | B
8071 8072 8073 8074 8075 8076 8077 8078
it | R AR R Mk | I |
817 8172 8173 8174 8175 8176 8177 8178
AR FE R | 5RO
8271 8272 8273 8274 8275 8276 8277 8278
B k2| 0h A | 22
8371 8372 8373 8374 8375 8376 8377 8378
B R Rk | A | R

http://ian-albert.com/unicode_chart/unichart-chinese. jpg

Representing Strings: the Unicode Standard

® 109,000 characters
® 93 scripts (organized)

e Enumeration of character properties,
such as case

e Supports bidirectional display order

* A canonical name for every character

U+0058 LATIN CAPITAL LETTER X
U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

G TR | I o
B | 5| 5 | e | HH | BHE | 5 HE
8071 8072 8073 8074 8075 8076 8077 8078
ORI AR TR e
it | iR 2 | i | i |
8171 8172 8173 8174 8175 8176 8177 8178
B FE R e | 6| BE |
S L5 L=

8271 8272 8273 8274 8275 8276 8277 8278
AR AR
=N RS A SN R TN
8371 8372 8373 8374 8375 8376 8317 8378
b g e = —- 45 | K- = = =

B—i\z = (==
%7\ 7% H 75'59 = % JB‘LE;I‘
http://ian-albert.com/unicode_chart/unichart-chinese. jpg

Representing Strings: the Unicode Standard

® 109,000 characters e

s |)
B | W IR | a | k|
e 03 g ripts (organized) 8071 gor2 | 8053 | sora | 8ors | 807 8077 8078
7 H | R 1 = =]
e Enumeration of character properties,]i% H’L‘{ Hﬁl] Hgé HEX HEX HIEI H%_
SUCh as Case 8171 8172 8173 8174 8175 8176 8177 8178

_ . g |
e Supports bidirectional display order E§ @ iF@ ﬁ%@ ﬂﬁ@ Eﬁ E@ KJJLIJ
8271 8272 8273 8274 8275 8276 8277 8278
* A canonical name for every character =l el e = ZHb | ks
y T E PR A 8| T |
8371 8372 8373 8374 8375 8376 8317 8378
A | e | e | e | e | o | s | e
B SRBR | Rk | 5% A ||

http://ian-albert.com/unicode_chart/unichart-chinese. jpg

I@I

U+0058 LATIN CAPITAL LETTER X

©

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

Representing Strings: the Unicode Standard

® 109,000 characters 5 | BE | A | Hilg | Bk .
' B | W IR | a | k|
e 03 g ripts (organized) 8071 gor2 | 8053 | sora | 8ors | 807 8077 8078
. , 7 H | gA 1| get | e | g
e Enumeration of character properties,]i% H’L‘{ Hﬁl] Hgé HEX HFX HEH H%_
SUCh as Case 8171 8172 8173 8174 8175 8176 8177 8178

_ 7 . g |
e Supports bidirectional display order EE @ iF@ ﬁ%@ ﬂﬁ@ 5@ E@ wLIJ
8271 8272 8273 8274 8275 8276 8277 8278
* A canonical name for every character =l el e = ZHb | ks
y B HE | B | 2
8371 8372 8373 8374 8375 8376 8317 8378
PRI 2= (EH| B

http://ian-albert.com/unicode_chart/unichart-chinese. jpg

I@I

U+0058 LATIN CAPITAL LETTER X

©

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE (Demo)

Representing Strings: UTF-8 Encoding

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

bytes

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

bytes integers

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0

bytes integers

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0

bytes 00000001 ! integers

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0

bytes 00000001 ! integers

00000010 2

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000
00000001
00000010
00000011

bytes integers

w N R S

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0
00000001 1
00000010 2
00000011 3

bytes integers

Variable-length encoding: integers vary in the number of bytes required to encode them.

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0
00000001 1
00000010 2
00000011 3

bytes integers

Variable-length encoding: integers vary in the number of bytes required to encode them.

In Python: string length is measured in characters, bytes length in bytes.

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0
00000001 1
00000010 2
00000011 3

bytes integers

Variable-length encoding: integers vary in the number of bytes required to encode them.
In Python: string length is measured in characters, bytes length in bytes.

(Demo)

Sequence Processing

Sequence Processing

Sequence Processing

Consider two problems:

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

Sequence Processing

Consider two problems:
Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals:

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

map fib:

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

map fib: e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

map fib: e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

filter even:

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
map fib: e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
A A A A

filter even:

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
map fib: e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
A A A A

filter even: Q, 2, 8, 34,

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

map fib: e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
A A A A

filter even: Q, 2, 8, 34,

accumulate sum:

Sequence Processing

Consider two problems:
’ Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate naturals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

map fib: e, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.
A A A A

filter even: Q, 2, 8, 34,

accumulate sum: ., ., ., ., =44

Sequence Processing

Consider two problems:
Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

Consider two problems:
Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

Consider two problems:
Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate words:

Sequence Processing

Consider two problems:
Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate words: '"University', 'of', ‘'California', 'Berkeley'

Sequence Processing

Consider two problems:
Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate words: '"University', 'of', ‘'California', 'Berkeley'

filter capitalized:

Sequence Processing

Consider two problems:
Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate words: '"University', 'of', ‘'California', 'Berkeley'

A A A

filter capitalized:

Sequence Processing

Consider two problems:
Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate words: '"University', 'of', ‘'California', 'Berkeley'

A A A

filter capitalized: 'University', 'California', 'Berkeley'

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the
capitalized word.

enumerate words:

filter capitalized:

map first:

acronym for a name, which includes the first letter of

‘University’',
VAN

‘University’',

Iofl’

'California’,
VAN

'California‘',

'Berkeley’

A

'Berkeley’

each

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the
capitalized word.

enumerate words:

filter capitalized:

map first:

acronym for a name, which includes

‘University’',
VAN

‘University’',

IUI’

Iofl’

'California’,
VAN

'California‘',

ICI'

the first letter of

'Berkeley’

A

'Berkeley’

each

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the
capitalized word.

enumerate words:

filter capitalized:

map first:

accumulate tuple:

acronym for a name, which includes

‘University’',
VAN

‘University’',

IUI’

Iofl’

'California’,
VAN

'California‘',

ICI'

the first letter of

'Berkeley’

A

'Berkeley’

each

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes

capitalized word.

enumerate words:

filter capitalized:

map first:

accumulate tuple:

‘University’',
VAN

‘University’',

Iofl’

'California’,
VAN

'California‘',

the first letter of each

'Berkeley’

A

'Berkeley’

Mapping a Function over a Sequence

Apply a function to each element of the sequence

Mapping a Function over a Sequence

Apply a function to each element of the sequence

>>> alternates = (-1, 2, -3, 4, -5)

Mapping a Function over a Sequence

Apply a function to each element of the sequence

>>> alternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))

Mapping a Function over a Sequence

Apply a function to each element of the sequence

>>> alternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

Mapping a Function over a Sequence

Apply a function to each element of the sequence

>>> glternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

The returned value of map is an iterable map object

Mapping a Function over a Sequence

Apply a function to each element of the sequence

>>> glternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

A constructor for the
built-in map type

Mapping a Function over a Sequence

Apply a function to each element of the sequence

>>> glternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

The returned value offmap}is an iterable map object

A constructor for the
built-in map type

The returned value of filter is an iterable filter object

Mapping a Function over a Sequence

Apply a function to each element of the sequence

>>> glternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

The returned value offmap}is an iterable map object

A constructor for the
built-in map type

The returned value of filter is an iterable filter object

(Demo)

lteration and Accumulation

lterable Values and Accumulation

lterable Values and Accumulation

Iterable objects give access to their elements in order.

Ilterable Values and Accumulation

Iterable objects give access to their elements in order.

Similar to a sequence, but does not always allow element selection or have finite length.

Ilterable Values and Accumulation

Iterable objects give access to their elements in order.
Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

Ilterable Values and Accumulation

Iterable objects give access to their elements in order.
Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements

Ilterable Values and Accumulation

Iterable objects give access to their elements in order.
Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements

sum Return the sum of the elements

Ilterable Values and Accumulation

Iterable objects give access to their elements in order.
Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements
sum Return the sum of the elements

min Return the minimum of the elements

Ilterable Values and Accumulation

Iterable objects give access to their elements in order.
Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements
sum Return the sum of the elements
min Return the minimum of the elements

max Return the maximum of the elements

Ilterable Values and Accumulation

Iterable objects give access to their elements in order.
Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements
sum Return the sum of the elements

min Return the minimum of the elements

max Return the maximum of the elements

For statements also operate on iterable values.

Reducing a Sequence

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

>>> from functools import reduce

Reducing a Sequence
Reduce is a higher-order generalization of max, min, & sum.
>>> from operator import mul

>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul
>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))
120

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul
>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))

120 A

First argument:
A two-argument function

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul
>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))

120 A

First argument: Second argument: an
A two-argument function iterable object

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul
>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))
120

First argument: Second argument: an
A two-argument function iterable object

Similar to accumulate from Homework 2, but with iterable objects.

Generator Expressions

One large expression that evaluates to an iterable object

Generator Expressions

One large expression that evaluates to an iterable object

(<map exp> for <name> in <iter exp> if <filter exp>)

Generator Expressions

One large expression that evaluates to an iterable object

(<map exp> for <name> in <iter exp> if <filter exp>)

e Evaluates to an iterable object.

Generator Expressions

One large expression that evaluates to an iterable object

(<map exp> for <name> in <iter exp> if <filter exp>)

e Evaluates to an iterable object.

e<iter exp> is evaluated when the generator expression is evaluated.

Generator Expressions

One large expression that evaluates to an iterable object

(<map exp> for <name> in <iter exp> if <filter exp>)

e Evaluates to an iterable object.
e<iter exp> is evaluated when the generator expression is evaluated.

e Remaining expressions are evaluated when elements are accessed.

Generator Expressions

One large expression that evaluates to an iterable object

(<map exp> for <name> in <iter exp> if <filter exp>)

e Evaluates to an iterable object.
e<iter exp> is evaluated when the generator expression is evaluated.

e Remaining expressions are evaluated when elements are accessed.

Short version: (<map exp> for <name> in <iter exp>)

Generator Expressions
One large expression that evaluates to an iterable object
(<map exp> for <name> in <iter exp> if <filter exp>)

e Evaluates to an iterable object.
e<iter exp> is evaluated when the generator expression is evaluated.

e Remaining expressions are evaluated when elements are accessed.

Short version: (<map exp> for <name> in <iter exp>)

(Demo)

