
61A Lecture 13

Wednesday, October 2

Announcements

2

Announcements

• Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

2

Announcements

• Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

• Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

2

Announcements

• Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

• Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

• Homework 4 due Tuesday 10/8 @ 11:59pm.

2

Announcements

• Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

• Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

2

Announcements

• Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

• Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

2

Announcements

• Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

• Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

Topics: Data abstraction, sequences, and non-local assignment.

2

Announcements

• Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

• Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

Topics: Data abstraction, sequences, and non-local assignment.

Please RSVP on Piazza!

2

Announcements

• Homework 3 deadline extended to Wednesday 10/2 @ 11:59pm.

• Optional Hog strategy contest due Thursday 10/3 @ 11:59pm.

• Homework 4 due Tuesday 10/8 @ 11:59pm.

• Project 2 due Thursday 10/10 @ 11:59pm.

• Guerrilla Section 2 this Saturday 10/5 & Sunday 10/6 10am-1pm in Soda.

Topics: Data abstraction, sequences, and non-local assignment.

Please RSVP on Piazza!

• Guest lecture on Wednesday 10/9, Peter Norvig on Natural Language Processing in Python.

2

Strings

Strings are an Abstraction

4

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '(1, 2)'

4

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '(1, 2)'

Representing language:

"""And, as imagination bodies forth
The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
"""

4

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '(1, 2)'

Representing language:

"""And, as imagination bodies forth
The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

4

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '(1, 2)'

Representing language:

"""And, as imagination bodies forth
The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

(Demo)

4

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

5

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

Single-quoted and double-quoted
strings are equivalent

5

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

Single-quoted and double-quoted
strings are equivalent

5

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

A backslash "escapes" the
following character

Single-quoted and double-quoted
strings are equivalent

5

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

"Line feed" character
represents a new line

A backslash "escapes" the
following character

Single-quoted and double-quoted
strings are equivalent

5

Strings are Sequences

6

Strings are Sequences

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-
negative integer index less than its length, starting at 0 for the first
element.

6

Strings are Sequences

>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-
negative integer index less than its length, starting at 0 for the first
element.

6

Strings are Sequences

>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-
negative integer index less than its length, starting at 0 for the first
element.

An element of a string is itself a string,
but with only one character!

6

Strings are Sequences

>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-
negative integer index less than its length, starting at 0 for the first
element.

An element of a string is itself a string,
but with only one character!

6

(Demo)

String Membership Differs from Other Sequence Types

7

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

7

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True
>>> 234 in (1, 2, 3, 4, 5)
False

7

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True
>>> 234 in (1, 2, 3, 4, 5)
False

Why? Working with strings, we usually care about words more than characters

7

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True
>>> 234 in (1, 2, 3, 4, 5)
False

The count method also matches substrings

Why? Working with strings, we usually care about words more than characters

7

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True
>>> 234 in (1, 2, 3, 4, 5)
False

>>> 'Mississippi'.count('i')
4
>>> 'Mississippi'.count('issi')
1

The count method also matches substrings

Why? Working with strings, we usually care about words more than characters

7

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True
>>> 234 in (1, 2, 3, 4, 5)
False

>>> 'Mississippi'.count('i')
4
>>> 'Mississippi'.count('issi')
1

The count method also matches substrings

the number of
non-overlapping
occurrences of a

substring

Why? Working with strings, we usually care about words more than characters

7

String Membership Differs from Other Sequence Types

The "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True
>>> 234 in (1, 2, 3, 4, 5)
False

>>> 'Mississippi'.count('i')
4
>>> 'Mississippi'.count('issi')
1

The count method also matches substrings

the number of
non-overlapping
occurrences of a

substring

Why? Working with strings, we usually care about words more than characters

7

Encoding Strings

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

9

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

9

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

9

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

• Layout was chosen to support sorting by character code

9

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

• Layout was chosen to support sorting by character code
• Rows indexed 2-5 are a useful 6-bit (64 element) subset

9

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

• Layout was chosen to support sorting by character code
• Rows indexed 2-5 are a useful 6-bit (64 element) subset
• Control characters were designed for transmission

9

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

• Layout was chosen to support sorting by character code
• Rows indexed 2-5 are a useful 6-bit (64 element) subset
• Control characters were designed for transmission

"Line feed" (\n)

9

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

• Layout was chosen to support sorting by character code
• Rows indexed 2-5 are a useful 6-bit (64 element) subset
• Control characters were designed for transmission

"Line feed" (\n)"Bell" (\a)

9

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

• Layout was chosen to support sorting by character code
• Rows indexed 2-5 are a useful 6-bit (64 element) subset
• Control characters were designed for transmission

"Line feed" (\n)"Bell" (\a)

9

(Demo)

Representing Strings: the Unicode Standard

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)
• Enumeration of character properties,
such as case

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)
• Enumeration of character properties,
such as case

• Supports bidirectional display order

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)
• Enumeration of character properties,
such as case

• Supports bidirectional display order
• A canonical name for every character

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)
• Enumeration of character properties,
such as case

• Supports bidirectional display order
• A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)
• Enumeration of character properties,
such as case

• Supports bidirectional display order
• A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)
• Enumeration of character properties,
such as case

• Supports bidirectional display order
• A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)
• Enumeration of character properties,
such as case

• Supports bidirectional display order
• A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

'☺'
10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)
• Enumeration of character properties,
such as case

• Supports bidirectional display order
• A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

'☺' '☹'
10

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
• 93 scripts (organized)
• Enumeration of character properties,
such as case

• Supports bidirectional display order
• A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

'☺' '☹'
10

(Demo)

Representing Strings: UTF-8 Encoding

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

bytes

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

bytes integers

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0

bytes integers

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0
00000001 1bytes integers

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0
00000001 1
00000010 2

bytes integers

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000 0
00000001 1

00000011 3
00000010 2

bytes integers

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

Variable-length encoding: integers vary in the number of bytes required to encode them.

00000000 0
00000001 1

00000011 3
00000010 2

bytes integers

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

Variable-length encoding: integers vary in the number of bytes required to encode them.

00000000 0
00000001 1

00000011 3
00000010 2

bytes integers

In Python: string length is measured in characters, bytes length in bytes.

11

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

Variable-length encoding: integers vary in the number of bytes required to encode them.

00000000 0
00000001 1

00000011 3
00000010 2

bytes integers

In Python: string length is measured in characters, bytes length in bytes.

11

(Demo)

Sequence Processing

Sequence Processing

13

Consider two problems:

Sequence Processing

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

Sequence Processing

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

enumerate naturals:

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.enumerate naturals:

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.enumerate naturals:

map fib:

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.enumerate naturals:

map fib:

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.enumerate naturals:

map fib:

filter even:

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.enumerate naturals:

map fib:

filter even:

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

0, 2, 8, 34, .

enumerate naturals:

map fib:

filter even:

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

0, 2, 8, 34, .

enumerate naturals:

map fib:

filter even:

accumulate sum:

13

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

Sequence Processing

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

0, 2, 8, 34, .

enumerate naturals:

map fib:

filter even:

accumulate sum: ., ., ., ., =44

13

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

enumerate words:

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

'University', 'of', 'California', 'Berkeley'enumerate words:

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

'University', 'of', 'California', 'Berkeley'enumerate words:

filter capitalized:

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

'University', 'of', 'California', 'Berkeley'enumerate words:

filter capitalized:

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

'University', 'of', 'California', 'Berkeley'enumerate words:

filter capitalized: 'University', 'California', 'Berkeley'

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

'University', 'of', 'California', 'Berkeley'enumerate words:

filter capitalized:

map first:

'University', 'California', 'Berkeley'

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

'University', 'of', 'California', 'Berkeley'enumerate words:

filter capitalized:

map first:

'University', 'California', 'Berkeley'

 'U', 'C', 'B'

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

'University', 'of', 'California', 'Berkeley'enumerate words:

filter capitalized:

map first:

accumulate tuple:

'University', 'California', 'Berkeley'

 'U', 'C', 'B'

14

Sequence Processing

Consider two problems:

Sum the even members of the first n Fibonacci numbers.

List the letters in the acronym for a name, which includes the first letter of each
capitalized word.

'University', 'of', 'California', 'Berkeley'enumerate words:

filter capitalized:

map first:

accumulate tuple:

'University', 'California', 'Berkeley'

 'U', 'C', 'B'

('U', 'C', 'B')

14

Mapping a Function over a Sequence

Apply a function to each element of the sequence

15

Mapping a Function over a Sequence

>>> alternates = (-1, 2, -3, 4, -5)

Apply a function to each element of the sequence

15

Mapping a Function over a Sequence

>>> alternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))

Apply a function to each element of the sequence

15

Mapping a Function over a Sequence

>>> alternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

Apply a function to each element of the sequence

15

Mapping a Function over a Sequence

>>> alternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

Apply a function to each element of the sequence

The returned value of map is an iterable map object

15

Mapping a Function over a Sequence

>>> alternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

Apply a function to each element of the sequence

The returned value of map is an iterable map object

A constructor for the
built-in map type

15

Mapping a Function over a Sequence

>>> alternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

Apply a function to each element of the sequence

The returned value of map is an iterable map object

A constructor for the
built-in map type

The returned value of filter is an iterable filter object

15

Mapping a Function over a Sequence

>>> alternates = (-1, 2, -3, 4, -5)

>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)

Apply a function to each element of the sequence

The returned value of map is an iterable map object

A constructor for the
built-in map type

The returned value of filter is an iterable filter object

15

(Demo)

Iteration and Accumulation

Iterable Values and Accumulation

17

Iterable Values and Accumulation

Iterable objects give access to their elements in order.

17

Iterable Values and Accumulation

Iterable objects give access to their elements in order.

Similar to a sequence, but does not always allow element selection or have finite length.

17

Iterable Values and Accumulation

Iterable objects give access to their elements in order.

Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

17

Iterable Values and Accumulation

Iterable objects give access to their elements in order.

Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements

17

Iterable Values and Accumulation

Iterable objects give access to their elements in order.

Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements

sum Return the sum of the elements

17

Iterable Values and Accumulation

Iterable objects give access to their elements in order.

Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements

sum Return the sum of the elements

min Return the minimum of the elements

17

Iterable Values and Accumulation

Iterable objects give access to their elements in order.

Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements

sum Return the sum of the elements

min Return the minimum of the elements

max Return the maximum of the elements

17

Iterable Values and Accumulation

Iterable objects give access to their elements in order.

Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements

sum Return the sum of the elements

min Return the minimum of the elements

max Return the maximum of the elements

For statements also operate on iterable values.

17

Reducing a Sequence

18

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

18

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

18

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

>>> from functools import reduce

18

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))

18

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))
120

18

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))
120

First argument:
A two-argument function

18

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))
120

First argument:
A two-argument function

Second argument: an
iterable object

18

Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))
120

Similar to accumulate from Homework 2, but with iterable objects.

First argument:
A two-argument function

Second argument: an
iterable object

18

Generator Expressions

One large expression that evaluates to an iterable object

19

Generator Expressions

(<map exp> for <name> in <iter exp> if <filter exp>)

One large expression that evaluates to an iterable object

19

Generator Expressions

(<map exp> for <name> in <iter exp> if <filter exp>)

One large expression that evaluates to an iterable object

•Evaluates to an iterable object.

19

Generator Expressions

(<map exp> for <name> in <iter exp> if <filter exp>)

One large expression that evaluates to an iterable object

•Evaluates to an iterable object.

•<iter exp> is evaluated when the generator expression is evaluated.

19

Generator Expressions

(<map exp> for <name> in <iter exp> if <filter exp>)

One large expression that evaluates to an iterable object

•Evaluates to an iterable object.

•<iter exp> is evaluated when the generator expression is evaluated.

•Remaining expressions are evaluated when elements are accessed.

19

Generator Expressions

(<map exp> for <name> in <iter exp> if <filter exp>)

One large expression that evaluates to an iterable object

Short version: (<map exp> for <name> in <iter exp>)

•Evaluates to an iterable object.

•<iter exp> is evaluated when the generator expression is evaluated.

•Remaining expressions are evaluated when elements are accessed.

19

Generator Expressions

(<map exp> for <name> in <iter exp> if <filter exp>)

One large expression that evaluates to an iterable object

Short version: (<map exp> for <name> in <iter exp>)

•Evaluates to an iterable object.

•<iter exp> is evaluated when the generator expression is evaluated.

•Remaining expressions are evaluated when elements are accessed.

19

(Demo)

