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Iterable Values and Accumulation

Iterable objects give access to their elements in order.

Similar to a sequence, but does not always allow element selection or have finite length.

Many built-in functions take iterable objects as argument.

tuple Return a tuple containing the elements

sum Return the sum of the elements

min Return the minimum of the elements

max Return the maximum of the elements

For statements also operate on iterable values.
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Reducing a Sequence

Reduce is a higher-order generalization of max, min, & sum.

>>> from operator import mul

>>> from functools import reduce

>>> reduce(mul, (1, 2, 3, 4, 5))
120

Similar to accumulate from Homework 2, but with iterable objects.

First argument:
A two-argument function

Second argument: an 
iterable object
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