
CS 61A Lecture 11

Friday, September 27

Announcements

2

Announcements

• Midterm 1 has been graded...

2

Announcements

• Midterm 1 has been graded...

Many of you did very well!

2

Announcements

• Midterm 1 has been graded...

Many of you did very well!

High scores on homework and projects balance out exam scores.

2

Announcements

• Midterm 1 has been graded...

Many of you did very well!

High scores on homework and projects balance out exam scores.

Typically, more than 75% of students receive A’s & B’s in 61A.

2

Announcements

• Midterm 1 has been graded...

Many of you did very well!

High scores on homework and projects balance out exam scores.

Typically, more than 75% of students receive A’s & B’s in 61A.

If you are falling behind, come to class (lecture, discussion, lab, & office hours)!

2

Announcements

• Midterm 1 has been graded...

Many of you did very well!

High scores on homework and projects balance out exam scores.

Typically, more than 75% of students receive A’s & B’s in 61A.

If you are falling behind, come to class (lecture, discussion, lab, & office hours)!

• Homework 3 due Tuesday 10/1 @ 11:59pm

2

Announcements

• Midterm 1 has been graded...

Many of you did very well!

High scores on homework and projects balance out exam scores.

Typically, more than 75% of students receive A’s & B’s in 61A.

If you are falling behind, come to class (lecture, discussion, lab, & office hours)!

• Homework 3 due Tuesday 10/1 @ 11:59pm

• Optional Hog Contest due Thursday 10/3 @ 11:59pm

2

Sequences

The Sequence Abstraction

4

The Sequence Abstraction

red, orange, yellow, green, blue, indigo, violet.

4

The Sequence Abstraction

There isn't just one sequence class or abstract data type (in Python or in general).

red, orange, yellow, green, blue, indigo, violet.

4

The Sequence Abstraction

There isn't just one sequence class or abstract data type (in Python or in general).

The sequence abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

4

The Sequence Abstraction

There isn't just one sequence class or abstract data type (in Python or in general).

The sequence abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0 for the first element.

4

The Sequence Abstraction

There isn't just one sequence class or abstract data type (in Python or in general).

The sequence abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0 for the first element.

 0 , 1 , 2 , 3 , 4 , 5 , 6 .

4

The Sequence Abstraction

There isn't just one sequence class or abstract data type (in Python or in general).

The sequence abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0 for the first element.

 0 , 1 , 2 , 3 , 4 , 5 , 6 .

There is built-in syntax associated with this behavior, or we can use functions.

A tuple is a kind of built-in sequence (demo)

4

Box-and-Pointer Notation

Box-and-Pointer Notation

6Examples: http://goo.gl/nyQfWG http://goo.gl/ovgSWT

Box-and-Pointer Notation

6Examples: http://goo.gl/nyQfWG http://goo.gl/ovgSWT

The Closure Property of Data Types

7

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if:

7

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if:

•The result of combination can itself be combined using the same method.

7

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if:

•The result of combination can itself be combined using the same method.

•Closure is the key to power in any means of combination because it permits
us to create hierarchical structures.

7

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if:

•The result of combination can itself be combined using the same method.

•Closure is the key to power in any means of combination because it permits
us to create hierarchical structures.

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on.

7

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if:

•The result of combination can itself be combined using the same method.

•Closure is the key to power in any means of combination because it permits
us to create hierarchical structures.

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on.

Tuples can contain tuples as elements

7

Recursive Lists

Recursive Lists

9

Recursive Lists

Constructor:
def rlist(first, rest):
 """Return a recursive list from its first element and the rest."""

9

Recursive Lists

Constructor:
def rlist(first, rest):
 """Return a recursive list from its first element and the rest."""

Selectors:
def first(s):
 """Return the first element of a recursive list s."""

def rest(s):
 """Return the rest of the elements of a recursive list s."""

9

Recursive Lists

Constructor:
def rlist(first, rest):
 """Return a recursive list from its first element and the rest."""

Selectors:
def first(s):
 """Return the first element of a recursive list s."""

def rest(s):
 """Return the rest of the elements of a recursive list s."""

Behavior condition(s):

9

Recursive Lists

Constructor:
def rlist(first, rest):
 """Return a recursive list from its first element and the rest."""

Selectors:
def first(s):
 """Return the first element of a recursive list s."""

def rest(s):
 """Return the rest of the elements of a recursive list s."""

Behavior condition(s):

If a recursive list s is constructed from a first element f and a recursive
list r, then

9

Recursive Lists

Constructor:
def rlist(first, rest):
 """Return a recursive list from its first element and the rest."""

Selectors:
def first(s):
 """Return the first element of a recursive list s."""

def rest(s):
 """Return the rest of the elements of a recursive list s."""

Behavior condition(s):

If a recursive list s is constructed from a first element f and a recursive
list r, then

•first(s) returns f, and

9

Recursive Lists

Constructor:
def rlist(first, rest):
 """Return a recursive list from its first element and the rest."""

Selectors:
def first(s):
 """Return the first element of a recursive list s."""

def rest(s):
 """Return the rest of the elements of a recursive list s."""

Behavior condition(s):

If a recursive list s is constructed from a first element f and a recursive
list r, then

•first(s) returns f, and

•rest(s) returns r, which is a recursive list.

9

Implementing Recursive Lists with Pairs

We can implement recursive lists as pairs. We'll use two-element tuples to encode pairs.

10

Implementing Recursive Lists with Pairs

We can implement recursive lists as pairs. We'll use two-element tuples to encode pairs.

10

1 , 2 , 3 , 4

Implementing Recursive Lists with Pairs

We can implement recursive lists as pairs. We'll use two-element tuples to encode pairs.

10

1 , 2 , 3 , 4

Implementing Recursive Lists with Pairs

We can implement recursive lists as pairs. We'll use two-element tuples to encode pairs.

10

A recursive list
is a pair

1 , 2 , 3 , 4

Implementing Recursive Lists with Pairs

We can implement recursive lists as pairs. We'll use two-element tuples to encode pairs.

10

A recursive list
is a pair

The first element of the
pair is the first element

of the list

1 , 2 , 3 , 4

Implementing Recursive Lists with Pairs

We can implement recursive lists as pairs. We'll use two-element tuples to encode pairs.

10

A recursive list
is a pair

The first element of the
pair is the first element

of the list

The second element of
the pair is the rest of

the list

1 , 2 , 3 , 4

Implementing Recursive Lists with Pairs

We can implement recursive lists as pairs. We'll use two-element tuples to encode pairs.

10

A recursive list
is a pair

The first element of the
pair is the first element

of the list

The second element of
the pair is the rest of

the list

None
represents
the empty

list

1 , 2 , 3 , 4

Implementing Recursive Lists with Pairs

We can implement recursive lists as pairs. We'll use two-element tuples to encode pairs.

10

A recursive list
is a pair

The first element of the
pair is the first element

of the list

The second element of
the pair is the rest of

the list

None
represents
the empty

list

(Demo)

1 , 2 , 3 , 4

Sequence Abstraction Implementation

Implementing the Sequence Abstraction

12

Implementing the Sequence Abstraction

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0 for the first element.

12

Implementing the Sequence Abstraction

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0 for the first element.

def len_rlist(s):
 """Return the length of recursive list s."""
 length = 0
 while s != empty_rlist:
 s, length = rest(s), length + 1
 return length

12

Implementing the Sequence Abstraction

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0 for the first element.

def len_rlist(s):
 """Return the length of recursive list s."""
 length = 0
 while s != empty_rlist:
 s, length = rest(s), length + 1
 return length

def getitem_rlist(s, i):
 """Return the element at index i of recursive list s."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

12

Implementing the Sequence Abstraction

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0 for the first element.

(Demo)

def len_rlist(s):
 """Return the length of recursive list s."""
 length = 0
 while s != empty_rlist:
 s, length = rest(s), length + 1
 return length

def getitem_rlist(s, i):
 """Return the element at index i of recursive list s."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

12

Recursive implementations

(Demo)

