
61A Lecture 10

Wednesday, September 25

Announcements

• Homework 3 due Tuesday 10/1 @ 11:59pm

• Optional Hog Contest entries due Thursday 10/3 @ 11:59pm

• Composition scores will be assigned this week (perhaps by Monday).
3/3 is very rare on the first project.
You can gain back any points you lose on the first project by revising it (November).

2

Data

Data Types

Numeric types in Python:

>>> type(2)
<class 'int'>

>>> type(1.5)
<class 'float'>

>>> type(1+1j)
<class 'complex'>

Represents integers exactly

Represents real numbers approximately

Every value has a type

(demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.

2. There are built-in functions, operators, and methods to manipulate those values.

4

Objects

(Demo)

•Objects represent information.
•They consist of data and behavior, bundled together to create abstractions.
•Objects can represent things, but also properties, interactions, & processes.
•A type of object is called a class; classes are first-class values in Python.
•Object-oriented programming:
•A metaphor for organizing large programs
•Special syntax that can improve the composition of programs

•In Python, every value is an object.
• All objects have attributes.
• A lot of data manipulation happens through object methods.
• Functions do one thing; objects do many related things.

5

Data Abstraction

Data Abstraction

• Compound objects combine objects together

• A date: a year, a month, and a day

• A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound objects as units

• Isolate two parts of any program that uses data:

How data are represented (as parts)

How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

All
Programmers

Great
Programmer

7

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:

numerator

denominator

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

Selectors

8

Rational Number Arithmetic

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

Example

9

General Form

def mul_rational(x, y):
 return rational(numer(x) * numer(y),
 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x
•numer(x) returns the numerator of x
•denom(x) returns the denominator of x

Constructor

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)

def equal_rational(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

10

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

SelectorsSelectors

These functions implement an
abstract data type

for rational numbers

Pairs

Pairs as Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Element selection

More tuples next lecture
12

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

Representing Rational Numbers

Construct a tuple

Select from a tuple

from operator import getitem

def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

def denom(x):
 """Return the denominator of rational number x."""
 return getitem(x, 1)

13

from fractions import gcd

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 g = gcd(n, d)
 return (n//g, d//g)

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

Greatest common divisor

14

Abstraction Barriers

Abstraction Barriers

add_rational mul_rational equal_rational

rational numer denom

tuple getitem

Rational numbers as whole data values

Rational numbers as numerators & denominators

Rational numbers as tuples

However tuples are implemented in Python

16

Does not use
constructors Twice!

No selectors!

And no constructor!

Violating Abstraction Barriers

add_rational((1, 2), (1, 4))

def divide_rational(x, y):

 return (x[0] * y[1], x[1] * y[0])

17

Data Representations

What is Data?

• We need to guarantee that constructor and selector functions work
together to specify the right behavior.

• Behavior condition: If we construct rational number x from numerator n
and denominator d, then numer(x)/denom(x) must equal n/d.

• An abstract data type is some collection of selectors and constructors,
together with some behavior condition(s).

• If behavior conditions are met, then the representation is valid.

You can recognize abstract data types by their behavior, not by their class

19

Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element tuple.

But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then

•getitem_pair(p, 0) returns x, and

•getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types.
Not true for rational numbers

because of GCD

20

(Demo)

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch

def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

This function
represents a pair

Functional Pair Implementation

Constructor is a
higher-order function

Selector defers to
the object itself

21

point = pair(2, 4)
getitem_pair(point, 1)

Example: http://goo.gl/9hVt8f

Using a Functionally Implemented Pair

>>> p = pair(1, 2)

>>> getitem_pair(p, 0)
1

>>> getitem_pair(p, 1)
2

If a pair p was constructed from elements x and y, then

•getitem_pair(p, 0) returns x, and

•getitem_pair(p, 1) returns y.

This pair representation is valid!

As long as we do not violate
the abstraction barrier,

we don't need to know that
pairs are just functions

22

