61A Lecture 10

Wednesday, September 25



Announcements

Homework 3 due Tuesday 10/1 @ 11:59pm
Optional Hog Contest entries due Thursday 10/3 @ 11:59pm

Composition scores will be assigned this week (perhaps by Monday).
3/3 is very rare on the first project.
You can gain back any points you lose on the first project by revising it (November).



Data



Data Types

Every value has a type
(demo)
Properties of native data types:
1. There are primitive expressions that evaluate to values of these types.

2. There are built-in functions, operators, and methods to manipulate those values.

Numeric types in Python:

>>> type(2) <[ h

<class 'int's Represents integers exactly

J

>>> type(1.5)

N
<class 'float'> <[ Represents real numbers approximately

J

>>> type(1+1j)
<class 'complex'>



Obijects

* Objects represent information.
e They consist of data and behavior, bundled together to create abstractions.
®* Objects can represent things, but also properties, interactions, & processes.
e A type of object is called a class; classes are first-class values in Python.
®* Object-oriented programming:

e A metaphor for organizing large programs

® Special syntax that can improve the composition of programs
e In Python, every value is an object.

e All objects have attributes.

e A lot of data manipulation happens through object methods.

e Functions do one thing; objects do many related things.

(Demo)



Data Abstraction



Data Abstraction

*Compound objects combine objects together
A date: a year, a month, and a day
*A geographic position: latitude and longitude
*An abstract data type lets us manipulate compound objects as units
Isolate two parts of any program that uses data:
How data are represented (as parts)
How data are manipulated (as units)

*Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

sJawwedboud

Jawwe.uboud

11V

1e949



Rational Numbers

numerator

denominator

Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:

e:numer(x): returns the numerator of x

[ Selectors j:>i 5
e.denom(x)i returns the denominator of x



Rational Number Arithmetic

3 3 9
—_— * —_— e —_—
2 5 10
3 3 21 nxkdy + nyxdx
— + — - — ———————————————————————————————————————
2 5 10 dxxdy

Example General Form




Rational Number Arithmetic Implementation

.

return{ rational{numer{x) * numeriy),

. denon(x)  denon(y))
[conSt Fuctorj -----------------

def add_rational(x, y):
nx, dx = numer(x), denom(x) nxxdy + nyxdx
ny, dy = numer(y), denom(y) -
return rational(nx * dy + ny *x dx, dx * dy) dxxdy

def equal_rational(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

E e rational(n, d) returns a rational number x E These functions implement an

. enumer(x) returns the numerator of x | abstract data type
. e denom(x) returns the denominator of x E for rational numbers




Pairs



Pairs as Tuples

>>> pair = (1, 2) A tuple literal:

?z> g?ir Comma-separated expression

>>> X, y = pair "Unpacking" a tuple
>>> X

1

=>>>Y

2

>>> pair[0] Element selection
1

>>> pair[1]

2

>>> from operator import getitem

>>> getitem(pair, 0)

1

>>> getitem(pair, 1)

2

More tuples next lecture



Representing Rational Numbers

def rational(n, d):
“"""Construct a rational number x that represents n/d."""

return {(n, d):

[ Construct a tuple ]

from operator import getitem

def numer(x):
"""Return the numerator of rational number Xx.
return getitem(x, 0)

def denom(x):
"""Return the denominator of rational number Xx.

minn
.

'

'

[ Select from a tuple ]




Reducing to Lowest Terms

Example:

3 5 5 2 1 1
_ x — = — _— + — = —
2 3 2 5 10 2

A\ A\
15 1/3 5 25 1/25
_ x — = — — % =
6 1/3 2 50 1/25

def rational(n, d):
"""Construct a rational number x that represents n/d."""
g = gcd(n, d)
return (n//g, d//g)



Abstraction Barriers



Abstraction Barriers

Rational numbers as whole data values

add_rational mul_rational equal_rational —

Rational numbers as numerators & denominators

rational numer denom

Rational numbers as tuples

tuple getitem

However tuples are implemented in Python



Violating Abstraction Barriers

Does not use Twice!
constructors ’

[Aan no constructor! J




Data Representations



What is Data?

We need to guarantee that constructor and selector functions work
together to specify the right behavior.

-Behavior condition: If we construct rational number x from numerator n
and denominator d, then numer(x)/denom(x) must equal n/d.

*An abstract data type is some collection of selectors and constructors,
together with some behavior condition(s).

- If behavior conditions are met, then the representation is valid.

You can recognize abstract data types by their behavior, not by their class



Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element tuple.

But is that the only way to make pairs of values? No!
Constructors, selectors, and behavior conditions:
If a pair p was constructed from elements x and y, then

e getitem_pair(p, @) returns x, and

e getitem_pair(p, 1) returns vy.

Together, selectors are the inverse of the constructor _
Not true for rational numbers

Generally true of container types. because of GCD

(Demo)



Functional Pair Implementation

point = pair(2, 4)

def Eﬁfr(x' y): , , | getitem_pair(point, 1)
"."Return a functional pair.""" g
def dispatch(m): Global frame func pair(x, y)
ifm== 0: i i pair . . .
return x This funCtion_ getitem_pair E func getiten pair(p, 1)
elif m == i represents a pair point | - func dispatch(m) [parent=f1]
. return vy |
return dispatch™ 5 fl: palr
______________________________________________________________________________________________________________________ X (2
. di tch
Constructor is a e
higher—-order function value

getitem_pair

def getitem_pair(p, i): CH
i1

"""Return_the element at index i of pair p."""
returni p(i):
M . dispatch [parent=fl]
Selector defers to m 1
the object itself Retum 4

Example: http://goo.gl/9hVt8f



Using a Functionally Implemented Pair

>>> p = pair(1, 2)

>>> getitem_pair(p, 0)
1

>>> getitem_pair(p, 1)
2

As long as we do not violate
the abstraction barrier,
we don't need to know that
pairs are just functions

~

If a pair p was constructed from elements x and y, then

e getitem_pair(p, @) returns x, and

e getitem_pair(p, 1) returns vy.

This pair representation is valid!



