61A Lecture 10

Wednesday, September 25

Announcements

Announcements

- Homework 3 due Tuesday 10/1 @ 11:59pm
-Optional Hog Contest entries due Thursday 10/3 @ 11:59pm
- Composition scores will be assigned this week (perhaps by Monday).
=3/3 is very rare on the first project.
"You can gain back any points you lose on the first project by revising it (November).

Data

Data Types

Every value has a type

(demo)

Data Types

Every value has a type (demo)

Properties of native data types:

Data Types

Every value has a type
 (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.

Data Types

Every value has a type
 (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Data Types

Every value has a type (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric types in Python:

Data Types

Every value has a type (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric types in Python:
>>> type(2)

Data Types

Every value has a type (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric types in Python:

```
>>> type(2)
<class 'int'>
```


Data Types

Every value has a type (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric types in Python:
>>> type(2)
<class 'int'>
>>> type(1.5)

Data Types

Every value has a type (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric types in Python:
>>> type(2)
<class 'int'>
>>> type(1.5)
<class 'float'>

Data Types

Every value has a type (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.
```
Numeric types in Python
>>> type(2)
<class 'int'>
>>> type(1.5)
<class 'float'>
>>> type(1+1j)
```


Data Types

Every value has a type (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.
```
Numeric types in Python:
>>> type(2)
<class 'int'>
>>> type(1.5)
<class 'float'>
>>> type(1+1j)
<class 'complex'>
```


Data Types

Every value has a type (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric types in Python:

```
>>> type(2)
<class 'int'>
Represents integers exactly
>>> type(1.5)
<class 'float'>
>>> type(1+1j)
<class 'complex'>
```


Data Types

Every value has a type
 (demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric types in Python:

Objects

Objects

- Objects represent information.

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.
- A type of object is called a class; classes are first-class values in Python.

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:
- A metaphor for organizing large programs

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:
- A metaphor for organizing large programs
- Special syntax that can improve the composition of programs

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:
- A metaphor for organizing large programs
- Special syntax that can improve the composition of programs
- In Python, every value is an object.

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:
- A metaphor for organizing large programs
- Special syntax that can improve the composition of programs
- In Python, every value is an object.
- All objects have attributes.

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:
- A metaphor for organizing large programs
- Special syntax that can improve the composition of programs
- In Python, every value is an object.
- All objects have attributes.
- A lot of data manipulation happens through object methods.

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:
- A metaphor for organizing large programs
- Special syntax that can improve the composition of programs
- In Python, every value is an object.
- All objects have attributes.
- A lot of data manipulation happens through object methods.
- Functions do one thing; objects do many related things.

Objects

- Objects represent information.
- They consist of data and behavior, bundled together to create abstractions.
- Objects can represent things, but also properties, interactions, \& processes.
- A type of object is called a class; classes are first-class values in Python.
- Object-oriented programming:
- A metaphor for organizing large programs
- Special syntax that can improve the composition of programs
- In Python, every value is an object.
- All objects have attributes.
- A lot of data manipulation happens through object methods.
- Functions do one thing; objects do many related things.
(Demo)

Data Abstraction

Data Abstraction

Data Abstraction

- Compound objects combine objects together

Data Abstraction

- Compound objects combine objects together
- A date: a year, a month, and a day

Data Abstraction

- Compound objects combine objects together
- A date: a year, a month, and a day
- A geographic position: latitude and longitude

Data Abstraction

- Compound objects combine objects together
- A date: a year, a month, and a day
- A geographic position: latitude and longitude
- An abstract data type lets us manipulate compound objects as units

Data Abstraction

- Compound objects combine objects together
- A date: a year, a month, and a day
- A geographic position: latitude and longitude
- An abstract data type lets us manipulate compound objects as units
- Isolate two parts of any program that uses data:

Data Abstraction

- Compound objects combine objects together
- A date: a year, a month, and a day
- A geographic position: latitude and longitude
- An abstract data type lets us manipulate compound objects as units
- Isolate two parts of any program that uses data:
"How data are represented (as parts)

Data Abstraction

- Compound objects combine objects together
- A date: a year, a month, and a day
- A geographic position: latitude and longitude
- An abstract data type lets us manipulate compound objects as units
- Isolate two parts of any program that uses data:
"How data are represented (as parts)
-How data are manipulated (as units)

Data Abstraction

- Compound objects combine objects together
- A date: a year, a month, and a day
- A geographic position: latitude and longitude
- An abstract data type lets us manipulate compound objects as units
- Isolate two parts of any program that uses data:
"How data are represented (as parts)
-How data are manipulated (as units)
- Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use

Data Abstraction

- Compound objects combine objects together
- A date: a year, a month, and a day
- A geographic position: latitude and longitude
- An abstract data type lets us manipulate compound objects as units
- Isolate two parts of any program that uses data:
-How data are represented (as parts)
-How data are manipulated (as units)
- Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use

Data Abstraction

- Compound objects combine objects together
- A date: a year, a month, and a day
- A geographic position: latitude and longitude
- An abstract data type lets us manipulate compound objects as units
- Isolate two parts of any program that uses data:
"How data are represented (as parts)
-How data are manipulated (as units)
- Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use

Rational Numbers

Rational Numbers

```
numerator
```

```
denominator
```


Rational Numbers

numerator

denominator

Exact representation of fractions

Rational Numbers

numerator

denominator

Exact representation of fractions

A pair of integers

Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!
```


Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!
Assume we can compose and decompose rational numbers:
```


Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!
Assume we can compose and decompose rational numbers:
```

- rational(n, d) returns a rational number x

Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!
Assume we can compose and decompose rational numbers:
```

- rational(n, d) returns a rational number x
- numer(x) returns the numerator of x

Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!
Assume we can compose and decompose rational numbers:
- rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
- denom(x) returns the denominator of x
```


Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!
Assume we can compose and decompose rational numbers:
```

```
Constructor rational(n, d) returns a rational number x
```

Constructor rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
- numer(x) returns the numerator of x
- denom(x) returns the denominator of x

```
    - denom(x) returns the denominator of x
```


Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!
Assume we can compose and decompose rational numbers:
```

```
Constructor rational(n, d) returns a rational number x
```

Constructor rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
- numer(x) returns the numerator of x
Selectors
Selectors
- denom(x) returns the denominator of x

```
    - denom(x) returns the denominator of x
```


Rational Number Arithmetic

Rational Number Arithmetic

Example

Rational Number Arithmetic

$$
\frac{3}{2} * \frac{3}{5}=\frac{9}{10}
$$

Rational Number Arithmetic

$$
\frac{3}{2} * \frac{3}{5}=\frac{9}{10}
$$

Rational Number Arithmetic

$$
\frac{3}{2} * \frac{3}{5}=\frac{9}{10}
$$

Rational Number Arithmetic

$$
\begin{aligned}
& \frac{3}{2} * \frac{3}{5}=\frac{9}{10} \\
& \frac{3}{2}+\frac{3}{5}
\end{aligned}
$$

Example

Rational Number Arithmetic

$$
\begin{aligned}
& \frac{3}{2} * \frac{3}{5}=\frac{9}{10} \\
& \frac{3}{2}+\frac{3}{5}=\frac{21}{10}
\end{aligned}
$$

Example

Rational Number Arithmetic

$$
\begin{aligned}
& \frac{3}{2} * \frac{3}{5}=\frac{9}{10} \\
& \frac{3}{2}+\frac{3}{5}=\frac{21}{10}
\end{aligned}
$$

Example

Rational Number Arithmetic

$$
\begin{aligned}
& \frac{3}{2} * \frac{3}{5}=\frac{9}{10} \\
& \frac{3}{2}+\frac{3}{5}=\frac{21}{10}
\end{aligned}
$$

Rational Number Arithmetic Implementation

- rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
- denom(x) returns the denominator of x

Rational Number Arithmetic Implementation

```
def mul_rational(x, y):
    return rational(numer(x) * numer(y),
        denom(x) * denom(y))
```


- rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
- denom(x) returns the denominator of x

Rational Number Arithmetic Implementation

```
def mul_rational(x, y):
    return rational(numer(x) * numer(y),
        ~}\operatorname{denom(x)*\operatorname{denom}(y))
        Constructor
```


- rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
- denom(x) returns the denominator of x

Rational Number Arithmetic Implementation

```
def mul_rational(x, y):
    return rational`numer(x) * numer(y),
```

```
                        Selectors
```

```
                        Selectors
```


- rational(n, d) returns a rational number x
- numer (x) returns the numerator of x
- denom(x) returns the denominator of x

Rational Number Arithmetic Implementation

```
def mul_rational(x, y):
    return rationai`numer(x) * numer(y),
```

```
    Selectors
```

 Selectors
 def add_rational(x, y):
nx, dx = numer(x), denom(x)
ny, dy = numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)

```

- rational(n, d) returns a rational number \(x\)
- numer( \(x\) ) returns the numerator of \(x\)
- denom(x) returns the denominator of \(x\)

\section*{Rational Number Arithmetic Implementation}
```

def mul_rational(x, y):
return rationai`numer(x) * numer(y),
Constructor denom(x) * denom(y))
Constructor
Selectors

```

```

def add_rational(x, y):
nx, dx = numer(x), denom(x)
ny, dy = numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)

```

def equal_rational(x, y):
    return numer(x) \(* \operatorname{denom}(y)==\operatorname{numer}(y) * \operatorname{denom}(x)\)
- rational(n, d) returns a rational number \(x\)
- numer(x) returns the numerator of \(x\)
- denom(x) returns the denominator of \(x\)

\section*{Rational Number Arithmetic Implementation}
```

def mul_rational(x, y):
return rational`numer(x) * numer(y),
~ denom(x) * denom(y))
Constructor

```
```

 Selectors
    ```
```

 Selectors
    ```

def add_rational(x, y):
    \(n x, d x=\) numer \((x)\), denom \((x)\)
    ny, dy \(=\) numer \((y)\), denom(y)
    return rational( \(n x * d y+n y * d x, d x * d y)\)

```

def equal_rational(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

```
- rational(n, d) returns a rational number \(x\)
- numer \((x)\) returns the numerator of \(x\)
- denom(x) returns the denominator of \(x\)

These functions implement an abstract data type for rational numbers

Pairs

\section*{Pairs as Tuples}

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)

```

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair }=(1,2) \\
& \gg \text { pair }
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair }=(1,2) \\
& \ggg \text { pair } \\
& (1,2)
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair }=(1,2) \\
& \ggg \text { pair } \\
& (1,2)
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair }=(1,2) \\
& \ggg \text { pair } \\
& (1,2)
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >> pair }=(1,2) \\
& \gg \text { pair } \\
& (1,2) \\
& \ggg x, y=\text { pair }
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair }=(1,2) \\
& \text { >>> pair } \\
& (1,2) \\
& \text { >>> x, y = pair } \\
& \ggg
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair }=(1,2) \\
& \text { >> pair } \\
& (1,2) \\
& \ggg x, y=\text { pair } \\
& \ggg \\
& 1
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair = }(1,2) \\
& \text { >> pair } \\
& (1,2) \\
& \ggg x, y=\text { pair } \\
& \ggg x \\
& 1 \\
& \ggg y
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair }=(1,2) \\
& \text { >> pair } \\
& (1,2) \\
& \text { >>> } x, y=\text { pair } \\
& \ggg x \\
& 1 \\
& \ggg y \\
& 2
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair }=(1,2) \\
& \text { >> pair } \\
& (1,2) \\
& \text { >>> } x, y=\text { pair } \\
& \ggg x \\
& 1 \\
& \ggg y \\
& 2
\end{aligned}
\]

\section*{Pairs as Tuples}
\[
\begin{aligned}
& \text { >>> pair }=(1,2) \\
& \text { >> pair } \\
& (1,2) \\
& \text { >>> } x, y=\text { pair } \\
& \ggg x \\
& 1 \\
& \ggg y \\
& 2
\end{aligned}
\]

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]

```

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1

```

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]

```

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2

```

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem

```

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)

```

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1

```

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)

```

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

```

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

```

A tuple literal: Comma-separated expression

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

```

A tuple literal: Comma-separated expression
"Unpacking" a tuple

\section*{Pairs as Tuples}
```

>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

```

A tuple literal: Comma-separated expression
"Unpacking" a tuple

Element selection

\section*{Pairs as Tuples}
```

```
>>> pair = (1, 2)
```

```
>>> pair = (1, 2)
>> pair
>> pair
(1, 2)
(1, 2)
>>> x, y = pair
>>> x, y = pair
>>> x
>>> x
1
1
>>> y
>>> y
2
2
>>> pair[0]
>>> pair[0]
1
1
>>> pair[1]
>>> pair[1]
2
2
>>> from operator import getitem
>>> from operator import getitem
>>> getitem(pair, 0)
>>> getitem(pair, 0)
1
1
>>> getitem(pair, 1)
>>> getitem(pair, 1)
2
```

```
2
```

```

A tuple literal:
Comma-separated expression
"Unpacking" a tuple

Element selection

\section*{Representing Rational Numbers}

\section*{Representing Rational Numbers}
def rational(n, d):
"""Construct a rational number \(x\) that represents \(n / d . " \| "\) return (n, d)

\section*{Representing Rational Numbers}
def rational(n, d):
"""Construct a rational number \(x\) that represents \(n / d . " \| "\) return ( \(\mathrm{n}, \mathrm{d}\) )

Construct a tuple

\section*{Representing Rational Numbers}
```

def rational(n, d):
"""Construct a rational number x that represents n/d."""
return(n, d)
Construct a tuple
from operator import getitem
def numer(x):
"""Return the numerator of rational number x.""""
return getitem(x, 0)

```

\section*{Representing Rational Numbers}
```

def rational(n, d):
"""Construct a rational number x that represents n/d.""""
return(n, d)
Construct a tuple
from operator import getitem
def numer(x):
""""Return the numerator of rational number x."""
return getitem(x, 0)
def denom(x):
"""Return the denominator of rational number x."""
return getitem(x, 1)

```

\section*{Representing Rational Numbers}
```

def rational(n, d):
"""Construct a rational number x that represents n/d.""""
return(n, d)
Construct a tuple
from operator import getitem
def numer(x):
""""Return the numerator of rational number x."""
return getitem(x, 0)
def denom(x):
"""Return the denominator of rational number x.""""
return getitem(x, 1)
Select from a tuple

```

\section*{Reducing to Lowest Terms}

\section*{Example:}

\section*{Reducing to Lowest Terms}

\section*{Example:}
\(\frac{3}{2} * \frac{5}{3}\)

\section*{Reducing to Lowest Terms}

\section*{Example:}
\[
\frac{3}{2} * \frac{5}{3}=\frac{5}{2}
\]

\section*{Reducing to Lowest Terms}

\section*{Example:}


\section*{Reducing to Lowest Terms}

\section*{Example:}


\section*{Reducing to Lowest Terms}

\section*{Example:}
\[
\frac{3}{2} * \frac{5}{3}=\frac{5}{2}+\frac{2}{5}+\frac{1}{10}=\frac{1}{2}
\]

\section*{Reducing to Lowest Terms}

\section*{Example:}


\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd

\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd
def rational(n, d):

\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd
def rational(n, d):
"""'Construct a rational number \(x\) that represents n/d.""""

\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd
def rational(n, d):
"""Construct a rational number \(x\) that represents n/d."""
\(g=\operatorname{gcd}(n, d)\)

\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd
def rational(n, d):
"""Construct a rational number \(x\) that represents n/d."""
\(g=\operatorname{gcd}(n, d)\)
return ( \(\mathrm{n} / / \mathrm{g}, \mathrm{d} / / \mathrm{g}\) )

\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd
def rational(n, d):
"""Construct a rational number \(x\) that represents \(n / d\). """ \(g=\operatorname{gcd}(n, d)\)
return ( \(\mathrm{n} / / \mathrm{g}, \mathrm{d} / / \mathrm{g}\) )

\author{
Abstraction Barriers
}

\section*{Abstraction Barriers}

Rational numbers as whole data values


However tuples are implemented in Python

Violating Abstraction Barriers
add_rational( (1, 2), (1, 4) )
def divide_rational(x, y): return \((x[0] * y[1], x[1] * y[0])\)

Violating Abstraction Barriers

def divide_rational(x, y): return \((x[0] * y[1], x[1] * y[0])\)

Violating Abstraction Barriers

def divide_rational(x, y): return \((x[0] * y[1], x[1] * y[0])\)

Violating Abstraction Barriers

def divide_rational(x, y): return \((x[0] * y[1], x[1] * y[0])\)
```

No selectors!

```

Violating Abstraction Barriers


\section*{Violating Abstraction Barriers}

\section*{Data Representations}

What is Data?

\section*{What is Data?}
- We need to guarantee that constructor and selector functions work together to specify the right behavior.

\section*{What is Data?}
- We need to guarantee that constructor and selector functions work together to specify the right behavior.
- Behavior condition: If we construct rational number \(x\) from numerator \(n\) and denominator \(d\), then numer \((x) / d e n o m(x)\) must equal \(n / d\).

\section*{What is Data?}
- We need to guarantee that constructor and selector functions work together to specify the right behavior.
- Behavior condition: If we construct rational number \(x\) from numerator \(n\) and denominator \(d\), then numer \((x) / d e n o m(x)\) must equal \(n / d\).
- An abstract data type is some collection of selectors and constructors, together with some behavior condition(s).

\section*{What is Data?}
- We need to guarantee that constructor and selector functions work together to specify the right behavior.
- Behavior condition: If we construct rational number \(x\) from numerator \(n\) and denominator \(d\), then numer \((x) / d e n o m(x)\) must equal \(n / d\).
- An abstract data type is some collection of selectors and constructors, together with some behavior condition(s).
- If behavior conditions are met, then the representation is valid.

\section*{What is Data?}
```

-We need to guarantee that constructor and selector functions work
together to specify the right behavior.
- Behavior condition: If we construct rational number x from numerator n
and denominator d, then numer(x)/denom(x) must equal n/d.
- An abstract data type is some collection of selectors and constructors,
together with some behavior condition(s).

- If behavior conditions are met, then the representation is valid.

```
You can recognize abstract data types by their behavior, not by their class

\section*{Behavior Conditions of a Pair}

\section*{Behavior Conditions of a Pair}

To implement our rational number abstract data type, we used a two-element tuple.

\section*{Behavior Conditions of a Pair}

To implement our rational number abstract data type, we used a two-element tuple. But is that the only way to make pairs of values? No!

\section*{Behavior Conditions of a Pair}

To implement our rational number abstract data type, we used a two-element tuple. But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

\section*{Behavior Conditions of a Pair}

To implement our rational number abstract data type, we used a two-element tuple. But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair \(p\) was constructed from elements \(x\) and \(y\), then
- getitem_pair(p, 0) returns \(x\), and
- getitem_pair(p, 1) returns y.

\section*{Behavior Conditions of a Pair}

To implement our rational number abstract data type, we used a two-element tuple. But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair \(p\) was constructed from elements \(x\) and \(y\), then
- getitem_pair(p, 0) returns x, and
- getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

\section*{Behavior Conditions of a Pair}

To implement our rational number abstract data type, we used a two-element tuple. But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair \(p\) was constructed from elements \(x\) and \(y\), then
- getitem_pair(p, 0) returns x, and
- getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types.

\section*{Behavior Conditions of a Pair}

To implement our rational number abstract data type, we used a two-element tuple.

But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair \(p\) was constructed from elements \(x\) and \(y\), then
- getitem_pair(p, 0) returns x, and
- getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types.
```

Not true for rational numbers
because of GCD

```

\section*{Behavior Conditions of a Pair}

To implement our rational number abstract data type, we used a two-element tuple.

But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair \(p\) was constructed from elements \(x\) and \(y\), then
- getitem_pair(p, 0) returns x, and
- getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor Generally true of container types.

\section*{Not true for rational numbers because of GCD}
(Demo)

\section*{Functional Pair Implementation}

\section*{Functional Pair Implementation}
```

def pair(x, y):
"""'Return a functional pair."""
def dispatch(m):
if m == 0:
return x
elif m == 1:
return y
return dispatch

```

\section*{Functional Pair Implementation}
```

def pair(x, y):
"""'"Return a functional pair.""""
def dispatch(m):
if m == 0:
return
elif m == 1: represents a pair
This function
return y
represents a pair

```

\section*{Functional Pair Implementation}
```

def pair(x, y):
"""'"Return a functional pair.""""
def dispatch(m):
if m == 0:
return x This function
elif m == 1: represents a pair
return y
<
return dispatch

```

Constructor is a higher-order function

\section*{Functional Pair Implementation}
```

def pair(x, y):
"""'Return a functional pair."""
def dispatch(m):
if m == 0:
return x
elif m == 1: represents a pair
This function
return y
represents a pair
Constructor is a
higher-order function

```
```

def getitem_pair(p, i):

```
def getitem_pair(p, i):
    """Return the element at index i of pair p.""""
    """Return the element at index i of pair p.""""
    return p(i)
```

 return p(i)
    ```

\section*{Functional Pair Implementation}
```

def pair(x, y):
""-"'Return a functional pair."""
def dispatch(m):
if m == 0:
return x
elif m == 1: represents a pair
This function
return y
represents a pair
Constructor is a
higher-order function
def getitem_pair(p, i):
"""Return the element at index i of pair p.""""
return p(i)
Selector defers to
the object itself

```

\section*{Functional Pair Implementation}

Constructor is a higher-order function
def pair(x, y):
def pair(x, y):
    """'Return a functional pair."""
    """'Return a functional pair."""
    def dispatch(m):
    def dispatch(m):
        if m == 0:
        if m == 0:
            return x
            return x
        elif m == 1:
        elif m == 1:
            return y
            return y
                represents a pair
                represents a pair
        eturn dispatch
        eturn dispatch
                This function
                This function
point \(=\) pair(2, 4)
getitem_pair(point, 1)
def getitem_pair(p, i):
def getitem_pair(p, i):
    """Return the element at index i of pair p.""""
    """Return the element at index i of pair p.""""
    return p(i)
    return p(i)
Selector defers to
Selector defers to
the object itself
the object itself

\section*{Functional Pair Implementation}

point \(=\) pair(2, 4)
getitem_pair(point, 1)


Using a Functionally Implemented Pair
```

>>> p = pair(1, 2)
>>> getitem_pair(p, 0)
1
>>> getitem_pair(p, 1)
2

```

\section*{Using a Functionally Implemented Pair}
```

>>> p = pair(1, 2)
>>> getitem_pair(p, 0)
1
>>> getitem_pair(p, 1)
2

```

> As long as we do not violate the abstraction barrier, we don't need to know that pairs are just functions

Using a Functionally Implemented Pair
```

 >>> p = pair(1, 2)
 >>> getitem_pair(p, 0)
 1
 >>> getitem_pair(p, 1)
2

```
```

As long as we do not violate
the abstraction barrier,
we don't need to know that
pairs are just functions

```

If a pair \(p\) was constructed from elements \(x\) and \(y\), then
- getitem_pair(p, 0) returns \(x\), and
- getitem_pair(p, 1) returns y.

Using a Functionally Implemented Pair


If a pair \(p\) was constructed from elements \(x\) and \(y\), then
- getitem_pair(p, 0) returns \(x\), and
- getitem_pair(p, 1) returns y.

> This pair representation is valid!```

