61A Lecture 8

Wednesday, September 18

Announcements

Project 1 is due Thursday 9/19 @ 11:59pm

Midterm 1 is on Monday 9/23 from 7pm to 9pm
2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel
HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB
Extra office hours over the weekend
Includes topics up to and including this lecture
Fill out the form on the website if you cannot attend

Homework 3 is due in two weeks: Tuesday 10/1 @ 11:59pm
It contains lots of recursion problems, for practice!

Optional Hog strategy contest ends Thursday 10/3 @ 11:59pm

Hog Contest Rules

e Up to two people submit one entry; Max of one entry per person.
* Your score is the number of entries against which you win more than 50% of the time.

* All strategies must be deterministic, pure functions of the current player scores!
Non-deterministic strategies will be disqualified.

* One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.

e To enter: submit projlcontest with a file hog.py that defines a final_strategy
function by Thursday 10/3 @ 11:59pm

e ALl winning entries will receive 2 points of extra credit

* The real prize: honor and glory

Fall 2011 Winners Fall 2012 Winners Fall 2013 Winners
Keegan Mann,
Yan Duan & Ziming Li, Chenyang Yuan, YOUR NAME COULD BE HERE...
Brian Prike & Zhenghao Qian, Joseph Hui FOREVER!

Parker Schuh & Robert Chatham

http://inst.eecs.berkeley.edu/~cs6la/fal3/proj/hog contest/hog contest.html

Order of Recursive Calls

The Cascade Function

def cascade(n):

(Demo)

Global frame

if n < 10: cascade
print(n)
else: cascade
print(n)
cascade(n//10) n 123
print(n)
- o cascade
cascade(123) . n 12
: Return | oo
I value
Program output: '
_l
123 ST L. cascade
----- - o= ="
12 «=-- " ', n i
1 <=----""" ;
P Return
12 €===-=--~- - value |NOne

Example: http://go0.gl1/090qzK

func cascade(n)

-Each cascade frame is from a
different call to cascade.

Until the Return value appears,
that call has not completed.

-Any statement can appear before
or after the recursive call.

Two Definitions of Cascade

(Demo)
def cascade(n): def cascade(n):

if n < 10: print(n)
print(n) if n >= 10:

else: cascade(n//10)
print(n) print(n)
cascade(n//10)
print(n)

- If two implementations are equally clear, then shorter is usually better.
« In this case, the longer implementation is more clear (at least to me).
- When learning to write recursive functions, put the base cases first.

- Both are recursive functions, even though only the first has typical structure.

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

n: 1, 2, 3, 4, 5, 6, 7, 8, 9, . 35

fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, sae 5,702,887

def fib(n):
if n == 1:
return 0
elif n == 2:
return 1
else:
return fib(n-2) + fib(n-1)

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

o) finy b fibG3) &
: 1 1 P
- i P A%

‘ ,:":fib(l) fib(2)~\‘ L fib(2)
1 /i %

‘
'
'
'
'

.

K @
.

. g .
. Y B
s . . '
teeee @) i H
.................. '
'
'

N
S
.
.
A
e S
.~ N
By S
. .
' ~
' N
0 N
. N
g AN
/ N
0 N
0 ON
‘ ae T ‘
. M .
' .
.
S .
.

fib(3) -~

.
S
.
.
S
.
.
.
S

fib(1) fib(2)

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.

fib(6)
fib(4) fib(5)
/ AN
fib(2) fib(3)
I N\ fib(3) fib(4)

1 fib(1) fib(2) yZ N Pz .

‘ ‘ fib(1) fib(2) fib(2) fib(3)

’ ' | | N

0 1 1 fib(1) fib(2)
0 1

We can speed up this computation dramatically in a few weeks by remembering results.

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

partition(6, 4)

2 +4=6)
1+1+4=6 ‘I'
3+3=6 []}
1+2+3=6 []}
1+1+1+3=6)
2+2+2=6)
1+1+2+2=6 -
1+1+1+1+2-= ‘I'
1+1+1+1+1+1=26 -

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

partition(6, 4)

*Recursive decomposition: finding
simpler instances of the problem.
-Explore two possibilities: .~~~
Use at least one 4

Don't use any 4

*Solve two simpler problems:
cpartition(2, 4) =======-= - L*
cpartition(6, 3) ======== -

Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

Recursive decomposition: finding def count partitions(n, m):
simpler instances of the problem. if n == O3
Explore two possibilities: return 1

1if < 0
Use at least one 4 ettt n 0

return 0
Don't use any 4 elif m == 0:
Solve two simpler problems: return 0
. else:

partition(2, 4) with m = count partitions(n-m, m)
partition(6, 3) without m = count partitions(n, m-1)

Tree recursion often involves return with m + without m
exploring different choices.

(Demo)

Example: http://go00.g9l/2575GK

Winning Hog

How to Win at Hog

What is the chance that I'll score at least k points rolling n six-sided dice?

Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).
The number of ways to score at least k in n rolls can be computed using tree recursion!

Sum over each possible dice outcome d that does not pig out:
the number of ways to score at least k - d points using n - 1 rolls.

Base case: The number of ways to score at least @ is pow(5, n).

Base case: The number of ways to score positive points in @ rolls is 0.

