61A Lecture 8

Wednesday, September 18

Announcements

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm
- Midterm 1 is on Monday 9/23 from 7pm to 9pm

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm
- Midterm 1 is on Monday 9/23 from 7pm to 9pm
"2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm
- Midterm 1 is on Monday 9/23 from 7pm to 9pm
" 2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel -HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm
- Midterm 1 is on Monday 9/23 from 7pm to 9pm
" 2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel -HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB
-Extra office hours over the weekend

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm
-Midterm 1 is on Monday 9/23 from 7pm to 9pm
"2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel -HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB
-Extra office hours over the weekend
- Includes topics up to and including this lecture

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm
-Midterm 1 is on Monday 9/23 from 7pm to 9pm
"2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel "HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB
-Extra office hours over the weekend
- Includes topics up to and including this lecture
*Fill out the form on the website if you cannot attend

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm
-Midterm 1 is on Monday 9/23 from 7pm to 9pm
" 2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel
"HKN review session on Sunday $9 / 22$ from 4 pm to 7 pm in 2050 Valley LSB
-Extra office hours over the weekend
- Includes topics up to and including this lecture
"Fill out the form on the website if you cannot attend
- Homework 3 is due in two weeks: Tuesday 10/1 @ 11:59pm

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm
- Midterm 1 is on Monday 9/23 from 7pm to 9pm
" 2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel
"HKN review session on Sunday $9 / 22$ from 4 pm to 7 pm in 2050 Valley LSB
-Extra office hours over the weekend
- Includes topics up to and including this lecture
"Fill out the form on the website if you cannot attend
-Homework 3 is due in two weeks: Tuesday 10/1 @ 11:59pm
= It contains lots of recursion problems, for practice!

Announcements

- Project 1 is due Thursday 9/19 @ 11:59pm
- Midterm 1 is on Monday 9/23 from 7pm to 9pm
"2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel
"HKN review session on Sunday $9 / 22$ from 4 pm to 7 pm in 2050 Valley LSB
-Extra office hours over the weekend
- Includes topics up to and including this lecture
*Fill out the form on the website if you cannot attend
-Homework 3 is due in two weeks: Tuesday 10/1 @ 11:59pm
= It contains lots of recursion problems, for practice!
- Optional Hog strategy contest ends Thursday 10/3 @ 11:59pm

Hog Contest Rules

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.
- Your score is the number of entries against which you win more than 50% of the time.

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.
- Your score is the number of entries against which you win more than 50% of the time.
- All strategies must be deterministic, pure functions of the current player scores! Non-deterministic strategies will be disqualified.

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.
- Your score is the number of entries against which you win more than 50% of the time.
- All strategies must be deterministic, pure functions of the current player scores! Non-deterministic strategies will be disqualified.
- One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.
- Your score is the number of entries against which you win more than 50% of the time.
- All strategies must be deterministic, pure functions of the current player scores! Non-deterministic strategies will be disqualified.
- One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
- To enter: submit projlcontest with a file hog.py that defines a final_strategy function by Thursday 10/3 @ 11:59pm

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.
- Your score is the number of entries against which you win more than 50% of the time.
- All strategies must be deterministic, pure functions of the current player scores! Non-deterministic strategies will be disqualified.
- One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
- To enter: submit projlcontest with a file hog.py that defines a final_strategy function by Thursday 10/3 @ 11:59pm
- All winning entries will receive 2 points of extra credit

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.
- Your score is the number of entries against which you win more than 50% of the time.
- All strategies must be deterministic, pure functions of the current player scores! Non-deterministic strategies will be disqualified.
- One more special rule: Ham Hijinks. Choose -1 to swap the 4 -sided and 6-sided dice.
- To enter: submit projlcontest with a file hog.py that defines a final_strategy function by Thursday 10/3 @ 11:59pm
- All winning entries will receive 2 points of extra credit
- The real prize: honor and glory

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.
- Your score is the number of entries against which you win more than 50% of the time.
- All strategies must be deterministic, pure functions of the current player scores! Non-deterministic strategies will be disqualified.
- One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
- To enter: submit proj1contest with a file hog.py that defines a final_strategy function by Thursday 10/3 @ 11:59pm
- All winning entries will receive 2 points of extra credit
- The real prize: honor and glory

Fall 2011 Winners

Keegan Mann,

Yan Duan \& Ziming Li, Brian Prike \& Zhenghao Qian, Parker Schuh \& Robert Chatham

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.
- Your score is the number of entries against which you win more than 50% of the time.
- All strategies must be deterministic, pure functions of the current player scores! Non-deterministic strategies will be disqualified.
- One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
- To enter: submit proj1contest with a file hog.py that defines a final_strategy function by Thursday 10/3 @ 11:59pm
- All winning entries will receive 2 points of extra credit
- The real prize: honor and glory

Fall 2011 Winners

Keegan Mann,
Yan Duan \& Ziming Li, Brian Prike \& Zhenghao Qian, Parker Schuh \& Robert Chatham

Fall 2012 Winners

Chenyang Yuan, Joseph Hui

Hog Contest Rules

- Up to two people submit one entry; Max of one entry per person.
- Your score is the number of entries against which you win more than 50% of the time.
- All strategies must be deterministic, pure functions of the current player scores! Non-deterministic strategies will be disqualified.
- One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
- To enter: submit proj1contest with a file hog.py that defines a final_strategy function by Thursday 10/3 @ 11:59pm
- All winning entries will receive 2 points of extra credit
- The real prize: honor and glory

Fall 2011 Winners
Keegan Mann,
Yan Duan \& Ziming Li, Brian Prike \& Zhenghao Qian, Parker Schuh \& Robert Chatham

Fall 2012 Winners

Chenyang Yuan, Joseph Hui

Fall 2013 Winners

YOUR NAME COULD BE HERE... FOREVER!

Order of Recursive Calls

The Cascade Function

(Demo)

The Cascade Function

1	def cascade $(n):$
2	if $n<10:$
3	$\operatorname{print}(n)$
4	else:
5	$\operatorname{print}(n)$
6	$\operatorname{cascade}(n / / 10)$
$\Rightarrow 7$	$\operatorname{print}(n)$
$\Rightarrow 8$	
9	cascade (123)

(Demo)

The Cascade Function

(Demo)

cascade
1

$\begin{array}{c}\text { Return } \\ \text { value }\end{array}$	None

The Cascade Function

Program output:

123
12
1
12

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
    g cascade(123)
```

(Demo)

```
```

Global frame }\longrightarrow\mathrm{ func cascade(n)

```
```

Global frame }\longrightarrow\mathrm{ func cascade(n)
cascade
cascade
cascade
cascade
n 123
n 123
cascade
cascade
n 12
n 12

- Each cascade frame is from a
- Each cascade frame is from a
different call to cascade.

```
```

 different call to cascade.
    ```
```

Return None
value None
cascade

| n | 1 |
| ---: | :--- |
| $\begin{aligned} \text { Return } \\ \text { value }\end{aligned}$ | None |

The Cascade Function

Program output:

123
12
1
12

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
    cascade(123)
```

(Demo)

```
```

Global frame }\longrightarrow\mathrm{ func cascade(n)

```
```

Global frame }\longrightarrow\mathrm{ func cascade(n)
cascade
cascade
cascade
cascade
n 123
n 123
cascade
cascade
n 12
n 12
Return None
Return None
-Until the Return value appears,
-Until the Return value appears,
that call has not completed.

```
```

 that call has not completed.
    ```
```

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.

```
cascade
    n 1
Return None
```


The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
    cascade(123)
```


Program output:

123
12
1
12
(Demo)

```
Global frame }\longrightarrow\mathrm{ func cascade(n)
    cascade
cascade
            n 123
cascade
    n 12
Return None
    value None
cascade
```

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.
n 1

$\begin{array}{c}\text { Return } \\ \text { value }\end{array}$	None

The Cascade Function

1	def cascade $(n):$
2	if $n<10:$
3	$\operatorname{print}(n)$
4	else:
5	$\operatorname{print}(n)$
6	$\operatorname{cascade}(n / / 10)$
$\Rightarrow 7$	$\operatorname{print}(n)$
8	
9	cascade (123)

Program output:

123
12
1
12
(Demo)

```
Global frame }\longrightarrow\mathrm{ func cascade(n)
    cascade
cascade
            n 123
cascade
    n 12
Return None
    value None
cascade
```

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

n	1

$\begin{array}{c}\text { Return } \\ \text { value }\end{array}$	None

The Cascade Function

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
    cascade(123)
```


Program output:

123
12
1
12
(Demo)

```
Global frame 
    cascade
cascade
            n 123
cascade
    n 12
Return None
    value
cascade
```

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

n	1

| Return |
| ---: | ---: |
| value | None

$\begin{array}{r}\text { Return } \\ \text { value }\end{array}$	None

The Cascade Function

```
1 def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
    cascade(123)
```


Program output:

(Demo)

cascade

n 12
Return
value None value
cascade

n	1
$\begin{array}{r}\text { Return } \\ \text { value }\end{array}$	None

- Each cascade frame is from a different call to cascade.
- Until the Return value appears, that call has not completed.
- Any statement can appear before or after the recursive call.

The Cascade Function

Two Definitions of Cascade

Two Definitions of Cascade
(Demo)

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```


Two Definitions of Cascade

```
        (Demo)
    def cascade(n):
        print(n)
        if n >= 10:
        cascade(n//10)
        print(n)
```

```
```

def cascade(n):

```
```

def cascade(n):

```
```

def cascade(n):
if n < 10:
if n < 10:
if n < 10:
print(n)
print(n)
print(n)
else:
else:
else:
print(n)
print(n)
print(n)
cascade(n//10)
cascade(n//10)
cascade(n//10)
print(n)

```
```

 print(n)
    ```
```

 print(n)
    ```
```


Two Definitions of Cascade

(Demo)

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

def cascade(n):
print(n)
if n >= 10:
cascade(n//10)
print(n)

- If two implementations are equally clear, then shorter is usually better.
- In this case, the longer implementation is more clear (at least to me).

Two Definitions of Cascade

(Demo)
def cascade(n):
print(n)
if n >= 10:
cascade(n//10)
print(n)

```
def cascade(n):
```

def cascade(n):
if n < 10:
if n < 10:
print(n)
print(n)
else:
else:
print(n)
print(n)
cascade(n//10)
cascade(n//10)
print(n)

```
        print(n)
```

- If two implementations are equally clear, then shorter is usually better.
- In this case, the longer implementation is more clear (at least to me).
- When learning to write recursive functions, put the base cases first.

Two Definitions of Cascade

(Demo)

```
def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)
```

def cascade(n):
print(n)
if $\mathrm{n}>=10$:
cascade(n//10)
print(n)

- If two implementations are equally clear, then shorter is usually better.
- In this case, the longer implementation is more clear (at least to me).
- When learning to write recursive functions, put the base cases first.
- Both are recursive functions, even though only the first has typical structure.

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

$$
\text { n: } 1,2,3,4,5,6,7,8,9,
$$

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

n: 1, 2, 3, 4, 5, 6, 7, 8, 9,
fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21,

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

$$
\begin{aligned}
& n: 1,2,3,4,5,6,7,8,9, 35 \\
& \text { fib(n): } 0,1,1,2,3,5,8,13,21,
\end{aligned}
$$

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

$$
\begin{array}{rrrr}
n: 1,2,3,4,5,6,7,8,9, & \ldots, & 35 \\
\text { fib(n): } 0,1,1,2,3,5,8,13,21, & \ldots, 702,887
\end{array}
$$

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.
$\mathrm{n}: 1,2,3,4,5,6,7,8,9, \quad 35$
fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21,..
def fib(n):
def fib(n):
if n == 1:
if n == 1:
return 0
return 0

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.
$\mathrm{n}: 1,2,3,4,5,6,7,8,9, \quad 35$
fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21,..
def fib(n):
def fib(n):
if n == 1:
if n == 1:
return 0
return 0
elif n == 2:
elif n == 2:

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

```
        n: 1, 2, 3, 4, 5, 6, 7, 8, 9, ... , 35
        fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ..., 5,702,887
def fib(n):
    if n == 1:
        return 0
    elif n == 2:
        return 1
```


Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

```
            n: 1, 2, 3, 4, 5, 6, 7, 8, 9, !., 35
fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ..., 5,702,887
```

```
def fib(n):
```

def fib(n):
if n == 1:
if n == 1:
return 0
return 0
elif n == 2:
elif n == 2:
return 1
return 1
else:

```
    else:
```


Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more than one call to that function.

```
            n: 1, 2, 3, 4, 5, 6, 7, 8, 9, #., 35
fib(n): 0, 1, 1, 2, 3, 5, 8, 13, 21, ..., 5,702,887
```

```
def fib(n):
```

def fib(n):
if n == 1:
if n == 1:
return 0
return 0
elif n == 2:
elif n == 2:
return 1
return 1
else:
else:
return fib(n-2) + fib(n-1)

```
        return fib(n-2) + fib(n-1)
```


A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure
fib(6)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

Repetition in Tree-Recursive Computation

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.

We can speed up this computation dramatically in a few weeks by remembering results.

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

$$
\begin{aligned}
& 2+4=6 \\
& 1+1+4=6 \\
& 3+3=6 \\
& 1+2+3=6 \\
& 1+1+1+3=6 \\
& 2+2+2=6 \\
& 1+1+2+2=6 \\
& 1+1+1+1+2=6 \\
& 1+1+1+1+1+1=6
\end{aligned}
$$

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

$$
\begin{aligned}
& 2+4=6 \\
& 1+1+4=6 \\
& 3+3=6 \\
& 1+2+3=6 \\
& 1+1+1+3=6 \\
& 2+2+2=6 \\
& 1+1+2+2=6 \\
& 1+1+1+1+2=6 \\
& 1+1+1+1+1+1=6
\end{aligned}
$$

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

$$
\begin{aligned}
& 2+4=6 \\
& 1+1+4=6 \\
& 3+3=6 \\
& 1+2+3=6 \\
& 1+1+1+3=6 \\
& 2+2+2=6 \\
& 1+1+2+2=6 \\
& 1+1+1+1+2=6 \\
& 1+1+1+1+1+1=6
\end{aligned}
$$

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

$$
\begin{aligned}
& 2+4=6 \\
& 1+1+4=6 \\
& 3+3=6 \\
& 1+2+3=6 \\
& 1+1+1+3=6 \\
& 2+2+2=6 \\
& 1+1+2+2=6 \\
& 1+1+1+1+2=6 \\
& 1+1+1+1+1+1=6
\end{aligned}
$$

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

- Recursive decomposition: finding simpler instances of the problem.

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

- Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

- Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

- Use at least one 4

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

- Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

- Use at least one 4
- Don't use any 4

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

- Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

- Use at least one 4
- Don't use any 4

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

- Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

- Use at least one 4
- Don't use any 4
- Solve two simpler problems:

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

- Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- partition(2, 4)

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

- Recursive decomposition: finding simpler instances of the problem.

Explore two possibilities:

- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- partition(2, 4)
- partition(6, 3)

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

Counting Partitions

The number of partitions of a positive integer \mathbf{n}, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.
partition(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which \mathbf{n} can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- partition(2, 4)
- partition(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which \mathbf{n} can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding

```
def count_partitions(n, m):
```

 simpler instances of the problem.
 Explore two possibilities:

- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- partition(2, 4)
- partition(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which \mathbf{n} can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding

```
def count_partitions(n, m):
```

 simpler instances of the problem.
 Explore two possibilities:

- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- partition(2, 4)
- partition(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which \mathbf{n} can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- partition(2, 4)
- partition(6, 3)
- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which \mathbf{n} can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- partition(2, 4)
- partition(6, 3)

```
def count_partitions(n, m):
```

else:
with_m $=$ count_partitions($n-m, m)$
without_m $=$ count_partitions($n, m-1$)

- Tree recursion often involves exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which \mathbf{n} can be expressed as the sum of positive integer parts up to m in increasing order.

- Recursive decomposition: finding simpler instances of the problem.
- Explore two possibilities:
- Use at least one 4
- Don't use any 4
- Solve two simpler problems:
- partition(2, 4)
- partition(6, 3)
- Tree recursion often involves exploring different choices.
else:
with_m $=$ count_partitions ($n-m, m)$
without_m $=$ count_partitions($n, m-1$)
return with_m + without_m

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
-Recursive decomposition: finding
    simpler instances of the problem.
Explore two possibilities:
-Use at least one 4
-Don't use any 4
- Solve two simpler problems:
```



```
    -partition(6, 3) without_m = count_partitions(n, m-1)
    -Tree recursion often involves
    exploring different choices.
```


Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
-Recursive decomposition: finding
    simpler instances of the problem.
Explore two possibilities:
-Use at least one 4
-Don't use any 4
-Solve two simpler problems:
    partition(2,4) =-= =-=-=-=-=- else:
    manm, with_m = count_partitions(n-m, m)
```



```
    -Tree recursion often involves
    return with_m + without_m
    exploring different choices.
```


Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
-Recursive decomposition: finding
    simpler instances of the problem.
```

```
def count_partitions(n, m):
```

def count_partitions(n, m):
if n == 0:
if n == 0:
Explore two possibilities:
-Use at least one 4
-Don't use any 4

- Solve two simpler problems:

```

```

 m, m=-=-=-=> with_m = count_partitions(n-m, m)
    ```

```

 -Tree recursion often involves
 return with_m + without_m
 exploring different choices.
    ```

\section*{Counting Partitions}

The number of partitions of a positive integer \(n\), using parts up to size \(m\), is the number of ways in which \(n\) can be expressed as the sum of positive integer parts up to \(m\) in increasing order.
```

-Recursive decomposition: finding
simpler instances of the problem.
Explore two possibilities:

```
```

def count_partitions(n, m):

```
def count_partitions(n, m):
    if n == 0:
    if n == 0:
        return 1
        return 1
    -Use at least one 4
    -Don't use any 4
-Solve two simpler problems:
    partition(2,4) =-=-=-=-=-=-=-- else:
    manm, with_m = count_partitions(n-m, m)
```



```
    -Tree recursion often involves
    return with_m + without_m
    exploring different choices.
```


Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
-Recursive decomposition: finding
    simpler instances of the problem.
Explore two possibilities:
    -Use at least one 4
    -Don't use any 4
- Solve two simpler problems:
    partition(2,4)-==-=-=-=-=-=--- else:
    m
```



```
    -Tree recursion often involves
    exploring different choices.
```

```
def count_partitions(n, m):
```

def count_partitions(n, m):
if n == 0:
if n == 0:
return 1
return 1
elif n < 0:
elif n < 0:
Use at least one 4

- Don't use any 4
- Solve two simpler problems:

```


```

-Tree recursion often involves return with_m + without_m exploring different choices.

```

\section*{Counting Partitions}

The number of partitions of a positive integer \(\mathbf{n}\), using parts up to size m, is the number of ways in which \(n\) can be expressed as the sum of positive integer parts up to \(m\) in increasing order.
```

-Recursive decomposition: finding
simpler instances of the problem.
Explore two possibilities:
-Use at least one 4
-Don't use any 4

- Solve two simpler problems:

```



```

 -Tree recursion often involves
 exploring different choices.
    ```
```

def count_partitions(n, m):

```
def count_partitions(n, m):
    if n == 0:
    if n == 0:
        return 1
        return 1
    elif n < 0:
    elif n < 0:
        return 0
        return 0
    return with_m + without_m
```


Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number of ways in which n can be expressed as the sum of positive integer parts up to m in increasing order.

```
-Recursive decomposition: finding
    simpler instances of the problem.
Explore two possibilities:
    -Use at least one 4
    -Don't use any 4
-Solve two simpler problems:
    partition(2, 4) =- =- =- =- = = = =- =- - - else:
    manm, with_m = count_partitions(n-m, m)
    partition(6, 3) = = = = = = = = = = = = = = = = = = = = = = = = = > without_m = count_partitions(n, m-1)
    -Tree recursion often involves
    exploring different choices.
```

```
def count_partitions(n, m):
```

def count_partitions(n, m):
if n == 0:
if n == 0:
return 1
return 1
elif n < 0:
elif n < 0:
return 0
return 0
elif m == 0:
elif m == 0:
return with_m + without_m

```

\section*{Counting Partitions}

The number of partitions of a positive integer \(n\), using parts up to size \(m\), is the number of ways in which \(n\) can be expressed as the sum of positive integer parts up to \(m\) in increasing order.
```

-Recursive decomposition: finding
simpler instances of the problem.
Explore two possibilities:
-Use at least one 4
-Don't use any 4

- Solve two simpler problems:

```



```

 -Tree recursion often involves
 exploring different choices.
    ```
```

def count_partitions(n, m):

```
def count_partitions(n, m):
    if n == 0:
    if n == 0:
        return 1
        return 1
    elif n < 0:
    elif n < 0:
        return 0
        return 0
    elif m == 0:
    elif m == 0:
        return 0
        return 0
        return with_m + without_m
```

 return with_m + without_m
    ```

\section*{Counting Partitions}

The number of partitions of a positive integer \(n\), using parts up to size \(m\), is the number of ways in which \(n\) can be expressed as the sum of positive integer parts up to \(m\) in increasing order.
```

-Recursive decomposition: finding
simpler instances of the problem.
Explore two possibilities:
- Use at least one 4
-Don't use any 4

- Solve two simpler problems:

```


```

 - partition(6, 3) = > without_m = count_partitions(n, m-1)
 -Tree recursion often involves
exploring different choices.

```
```

def count_partitions(n, m):

```
def count_partitions(n, m):
    if n == 0:
    if n == 0:
        return 1
        return 1
    elif n < 0:
    elif n < 0:
        return 0
        return 0
    elif m == 0:
    elif m == 0:
        return 0
        return 0
        return with_m + without_m
```

 return with_m + without_m
    ```

Winning Hog

\section*{How to Win at Hog}

\section*{How to Win at Hog}

What is the chance that I'll score at least \(\mathbf{k}\) points rolling \(\mathbf{n}\) six-sided dice?

\section*{How to Win at Hog}

What is the chance that I'll score at least \(\mathbf{k}\) points rolling \(\mathbf{n}\) six-sided dice?

> Number of ways to score at least k

Number of possible rolls

\section*{How to Win at Hog}

What is the chance that I'll score at least \(\mathbf{k}\) points rolling \(\mathbf{n}\) six-sided dice?

> Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).

\section*{How to Win at Hog}

What is the chance that I'll score at least k points rolling n six-sided dice?
\(\frac{\text { Number of ways to score at least } \mathbf{k}}{\text { Number of possible rolls }}\)

The number of possible rolls is pow(6, n).
The number of ways to score at least \(\mathbf{k}\) in \(\mathbf{n}\) rolls can be computed using tree recursion!

\section*{How to Win at Hog}

What is the chance that I'll score at least k points rolling n six-sided dice?

> Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).
The number of ways to score at least \(\mathbf{k}\) in \(\mathbf{n}\) rolls can be computed using tree recursion!
Sum over each possible dice outcome d that does not pig out:
the number of ways to score at least \(\mathbf{k}\) - \(\mathbf{d}\) points using \(\mathbf{n}\) - \(\mathbf{1}\) rolls.

\section*{How to Win at Hog}

What is the chance that I'll score at least k points rolling n six-sided dice?

> Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).
The number of ways to score at least \(\mathbf{k}\) in \(\mathbf{n}\) rolls can be computed using tree recursion!
Sum over each possible dice outcome d that does not pig out:
the number of ways to score at least \(\mathbf{k}\) - \(\mathbf{d}\) points using \(\mathbf{n} \mathbf{- 1}\) rolls.
Base case: The number of ways to score at least 0 is pow(5, n).

\section*{How to Win at Hog}

What is the chance that I'll score at least k points rolling n six-sided dice?
```

 Number of ways to score at least k
    ```

Number of possible rolls

The number of possible rolls is pow(6, n).
The number of ways to score at least \(\mathbf{k}\) in \(\mathbf{n}\) rolls can be computed using tree recursion!
Sum over each possible dice outcome d that does not pig out:
the number of ways to score at least \(\mathbf{k}\) - \(\mathbf{d}\) points using \(\mathbf{n} \mathbf{- 1}\) rolls.
Base case: The number of ways to score at least 0 is pow(5, n).
Base case: The number of ways to score positive points in 0 rolls is 0 .```

