
61A Lecture 8

Wednesday, September 18

Announcements

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm

2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm

2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel

HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm

2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel

HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB

Extra office hours over the weekend

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm

2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel

HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB

Extra office hours over the weekend

Includes topics up to and including this lecture

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm

2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel

HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB

Extra office hours over the weekend

Includes topics up to and including this lecture

Fill out the form on the website if you cannot attend

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm

2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel

HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB

Extra office hours over the weekend

Includes topics up to and including this lecture

Fill out the form on the website if you cannot attend

• Homework 3 is due in two weeks: Tuesday 10/1 @ 11:59pm

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm

2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel

HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB

Extra office hours over the weekend

Includes topics up to and including this lecture

Fill out the form on the website if you cannot attend

• Homework 3 is due in two weeks: Tuesday 10/1 @ 11:59pm

It contains lots of recursion problems, for practice!

2

Announcements

• Project 1 is due Thursday 9/19 @ 11:59pm

• Midterm 1 is on Monday 9/23 from 7pm to 9pm

2 review sessions on Saturday 9/21 2pm-4pm and 4pm-6pm in 1 Pimentel

HKN review session on Sunday 9/22 from 4pm to 7pm in 2050 Valley LSB

Extra office hours over the weekend

Includes topics up to and including this lecture

Fill out the form on the website if you cannot attend

• Homework 3 is due in two weeks: Tuesday 10/1 @ 11:59pm

It contains lots of recursion problems, for practice!

• Optional Hog strategy contest ends Thursday 10/3 @ 11:59pm

2

Hog Contest Rules

3http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.

3http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.

3http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.
• All strategies must be deterministic, pure functions of the current player scores!
Non-deterministic strategies will be disqualified.

3http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.
• All strategies must be deterministic, pure functions of the current player scores!
Non-deterministic strategies will be disqualified.

• One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.

3http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.
• All strategies must be deterministic, pure functions of the current player scores!
Non-deterministic strategies will be disqualified.

• One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
• To enter: submit proj1contest with a file hog.py that defines a final_strategy
function by Thursday 10/3 @ 11:59pm

3http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.
• All strategies must be deterministic, pure functions of the current player scores!
Non-deterministic strategies will be disqualified.

• One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
• To enter: submit proj1contest with a file hog.py that defines a final_strategy
function by Thursday 10/3 @ 11:59pm

• All winning entries will receive 2 points of extra credit

3http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.
• All strategies must be deterministic, pure functions of the current player scores!
Non-deterministic strategies will be disqualified.

• One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
• To enter: submit proj1contest with a file hog.py that defines a final_strategy
function by Thursday 10/3 @ 11:59pm

• All winning entries will receive 2 points of extra credit
• The real prize: honor and glory

3http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.
• All strategies must be deterministic, pure functions of the current player scores!
Non-deterministic strategies will be disqualified.

• One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
• To enter: submit proj1contest with a file hog.py that defines a final_strategy
function by Thursday 10/3 @ 11:59pm

• All winning entries will receive 2 points of extra credit
• The real prize: honor and glory

Keegan Mann,
Yan Duan & Ziming Li,

Brian Prike & Zhenghao Qian,
Parker Schuh & Robert Chatham

Fall 2011 Winners

3http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.
• All strategies must be deterministic, pure functions of the current player scores!
Non-deterministic strategies will be disqualified.

• One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
• To enter: submit proj1contest with a file hog.py that defines a final_strategy
function by Thursday 10/3 @ 11:59pm

• All winning entries will receive 2 points of extra credit
• The real prize: honor and glory

Keegan Mann,
Yan Duan & Ziming Li,

Brian Prike & Zhenghao Qian,
Parker Schuh & Robert Chatham

Fall 2011 Winners

3

Chenyang Yuan,
Joseph Hui

Fall 2012 Winners

http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Hog Contest Rules

• Up to two people submit one entry; Max of one entry per person.
• Your score is the number of entries against which you win more than 50% of the time.
• All strategies must be deterministic, pure functions of the current player scores!
Non-deterministic strategies will be disqualified.

• One more special rule: Ham Hijinks. Choose -1 to swap the 4-sided and 6-sided dice.
• To enter: submit proj1contest with a file hog.py that defines a final_strategy
function by Thursday 10/3 @ 11:59pm

• All winning entries will receive 2 points of extra credit
• The real prize: honor and glory

Keegan Mann,
Yan Duan & Ziming Li,

Brian Prike & Zhenghao Qian,
Parker Schuh & Robert Chatham

Fall 2011 Winners

3

Chenyang Yuan,
Joseph Hui

Fall 2012 Winners

YOUR NAME COULD BE HERE...
FOREVER!

Fall 2013 Winners

http://inst.eecs.berkeley.edu/~cs61a/fa13/proj/hog_contest/hog_contest.html

Order of Recursive Calls

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

• Each cascade frame is from a
different call to cascade.

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

The Cascade Function

5Example: http://goo.gl/O90qzK

(Demo)

• Each cascade frame is from a
different call to cascade.

• Until the Return value appears,
that call has not completed.

• Any statement can appear before
or after the recursive call.

Two Definitions of Cascade

6

(Demo)

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better.

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better.

• In this case, the longer implementation is more clear (at least to me).

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better.

• In this case, the longer implementation is more clear (at least to me).

• When learning to write recursive functions, put the base cases first.

Two Definitions of Cascade

6

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

def cascade(n):
 print(n)
 if n >= 10:
 cascade(n//10)
 print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better.

• In this case, the longer implementation is more clear (at least to me).

• When learning to write recursive functions, put the base cases first.

• Both are recursive functions, even though only the first has typical structure.

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

 ... , 35

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

def fib(n):

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

def fib(n):
 if n == 1:

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

def fib(n):
 if n == 1:
 return 0

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

def fib(n):
 if n == 1:
 return 0
 elif n == 2:

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 else:

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

Tree Recursion

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

def fib(n):
 if n == 1:
 return 0
 elif n == 2:
 return 1
 else:
 return fib(n-2) + fib(n-1)

Tree-shaped processes arise whenever executing the body of a recursive
function makes more than one call to that function.

8

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(4)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)fib(4)

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

9

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Demo

Repetition in Tree-Recursive Computation

10

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times.

10

Repetition in Tree-Recursive Computation

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

This process is highly repetitive; fib is called on the same argument multiple times.

10

Repetition in Tree-Recursive Computation

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

This process is highly repetitive; fib is called on the same argument multiple times.

10

We can speed up this computation dramatically in a few weeks by remembering results.

Example: Counting Partitions

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

12

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

12

partition(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

12

partition(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

12

partition(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

12

partition(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

12

partition(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

13

partition(6, 4)

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:

 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

Example: http://goo.gl/25ZSGK

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

14

• Recursive decomposition: finding
simpler instances of the problem.

• Explore two possibilities:

• Use at least one 4

• Don't use any 4

• Solve two simpler problems:

• partition(2, 4)

• partition(6, 3)

• Tree recursion often involves
exploring different choices.

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

(Demo)

Example: http://goo.gl/25ZSGK

Winning Hog

How to Win at Hog

16

How to Win at Hog

What is the chance that I'll score at least k points rolling n six-sided dice?

16

How to Win at Hog

What is the chance that I'll score at least k points rolling n six-sided dice?

16

Number of ways to score at least k

Number of possible rolls

How to Win at Hog

What is the chance that I'll score at least k points rolling n six-sided dice?

16

Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).

How to Win at Hog

What is the chance that I'll score at least k points rolling n six-sided dice?

16

Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).

The number of ways to score at least k in n rolls can be computed using tree recursion!

How to Win at Hog

What is the chance that I'll score at least k points rolling n six-sided dice?

16

Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).

The number of ways to score at least k in n rolls can be computed using tree recursion!

Sum over each possible dice outcome d that does not pig out:
the number of ways to score at least k - d points using n - 1 rolls.

How to Win at Hog

What is the chance that I'll score at least k points rolling n six-sided dice?

16

Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).

The number of ways to score at least k in n rolls can be computed using tree recursion!

Sum over each possible dice outcome d that does not pig out:
the number of ways to score at least k - d points using n - 1 rolls.

Base case: The number of ways to score at least 0 is pow(5, n).

How to Win at Hog

What is the chance that I'll score at least k points rolling n six-sided dice?

16

Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).

The number of ways to score at least k in n rolls can be computed using tree recursion!

Sum over each possible dice outcome d that does not pig out:
the number of ways to score at least k - d points using n - 1 rolls.

Base case: The number of ways to score at least 0 is pow(5, n).

Base case: The number of ways to score positive points in 0 rolls is 0.

