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def cascade(n):
    if n < 10:
        print(n)
    else:
        print(n)
        cascade(n//10)
        print(n)

def cascade(n):
    print(n)
    if n >= 10:
        cascade(n//10)
        print(n)

(Demo)

• If two implementations are equally clear, then shorter is usually better.

• In this case, the longer implementation is more clear (at least to me).

• When learning to write recursive functions, put the base cases first.

• Both are recursive functions, even though only the first has typical structure.
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 ... ,          35

def fib(n):
    if n == 1:
        return 0
    elif n == 2:
        return 1
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We can speed up this computation dramatically in a few weeks by remembering results.
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Number of ways to score at least k

Number of possible rolls

The number of possible rolls is pow(6, n).

The number of ways to score at least k in n rolls can be computed using tree recursion!

Sum over each possible dice outcome d that does not pig out: 
the number of ways to score at least k - d points using n - 1 rolls.

Base case: The number of ways to score at least 0 is pow(5, n).

Base case: The number of ways to score positive points in 0 rolls is 0.


