
61A Lecture 7

Monday, September 16

Announcements

• Homework 2 due Tuesday at 11:59pm

• Project 1 due Thursday at 11:59pm
Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
Readers hold these office hours; they are the ones who give you composition scores!

• Optional guerrilla section Monday 6pm-8pm, meeting outside of Soda 310

• Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
Closed book, paper-based exam.
You may bring one hand-written page of notes that you created (front & back).
You will have a study guide attached to your exam.
Midterm information: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm1.html
Review session: Saturday 9/21 (details TBD)
HKN Review session: Sunday 9/22 (details TBD)
Review office hours on Monday 9/23 (details TBD)

2

Recursive Functions

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself,
either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that
function again.

Drawing Hands, by M. C. Escher (lithograph, 1948)
4

Digit Sums

• If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.

• Useful for typo detection!

5

The Bank of 61A

1234 5678 9098 7658

OSKI THE BEAR

A checksum digit is a
function of all the
other digits; It can be
computed to detect typos

• Credit cards actually use the Luhn algorithm, which we'll implement after digit_sum.

2+0+1+3 = 6

Sum Digits Without a While Statement

def split(n):

 """Split positive n into all but its last digit and its last digit."""

 return n // 10, n % 10

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

6

The Anatomy of a Recursive Function

7

• The def statement header is similar to other functions

• Conditional statements check for base cases

• Base cases are evaluated without recursive calls

• Recursive cases are evaluated with recursive calls

(Demo)

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Recursion in Environment Diagrams

Recursion in Environment Diagrams

9Example: http://goo.gl/XOP9ps

• The same function fact is called
multiple times.

• Different frames keep track of the
different arguments in each call.

• What n evaluates to depends upon
which is the current environment.

• Each call to fact solves a simpler
problem than the last: smaller n.

(Demo)

4! = 4 · 3 · 2 · 1 = 24

n! =
nY

k=1

k n! =

(
1 if n = 0

n · (n� 1)! otherwise

Iteration vs Recursion

Iteration is a special case of recursion

def fact_iter(n):
 total, k = 1, 1
 while k <= n:
 total, k = total*k, k+1
 return total

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

Using iterative control: Using recursion:

n, total, k, fact_iter

Math:

Names: n, fact

10Example: http://goo.gl/NgH3Lf

Verifying Recursive Functions

The Recursive Leap of Faith

Is fact implemented correctly?

1. Verify the base case.

2. Treat fact as a functional abstraction!

3. Assume that fact(n-1) is correct.

4. Verify that fact(n) is correct, assuming that
fact(n-1) correct.

Photo by Kevin Lee, Preikestolen, Norway

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)

12

Mutual Recursion

The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

1. From the rightmost digit, which is the check digit, moving left, double the value of
every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
2 = 14), then sum the digits of the products (e.g., 10: 1 + 0 = 1, 14: 1 + 4 = 5).

2. Take the sum of all the digits.

14

1 3 8 7 4 3

2 3 1+6=7 7 8 3

The Luhn sum of a valid credit card number is a multiple of 10.

= 30

(Demo)

Recursion and Iteration

def sum_digits(n):

 """Return the sum of the digits of positive integer n."""

 if n < 10:

 return n

 else:

 all_but_last, last = split(n)

 return sum_digits(all_but_last) + last

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

What's left to sum

A partial sum

16

(Demo)

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
 digit_sum = 0
 while n > 0:
 n, last = split(n)
 digit_sum = digit_sum + last
 return digit_sum

def sum_digits_rec(n, digit_sum):
 if n == 0:
 return digit_sum
 else:
 n, last = split(n)
 return sum_digits_rec(n, digit_sum + last)

Updates via assignment become...

...arguments to a recursive call

17

