## 61A Lecture 7

Monday, September 16

## Announcements

## Announcements

- Homework 2 due Tuesday at 11:59pm


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
"Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
=Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
-Readers hold these office hours; they are the ones who give you composition scores!


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
"Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
"Readers hold these office hours; they are the ones who give you composition scores!
- Optional guerrilla section Monday 6 pm-8pm, meeting outside of Soda 310


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
=Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
-Readers hold these office hours; they are the ones who give you composition scores!
- Optional guerrilla section Monday 6 pm-8pm, meeting outside of Soda 310
- Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
=Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
-Readers hold these office hours; they are the ones who give you composition scores!
- Optional guerrilla section Monday 6pm-8pm, meeting outside of Soda 310
- Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
-Closed book, paper-based exam.


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
"Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
-Readers hold these office hours; they are the ones who give you composition scores!
- Optional guerrilla section Monday 6pm-8pm, meeting outside of Soda 310
- Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
- Closed book, paper-based exam.
- You may bring one hand-written page of notes that you created (front \& back).


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
"Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
"Readers hold these office hours; they are the ones who give you composition scores!
- Optional guerrilla section Monday 6 pm-8pm, meeting outside of Soda 310
- Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
- Closed book, paper-based exam.
- You may bring one hand-written page of notes that you created (front \& back).
- You will have a study guide attached to your exam.


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
=Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
-Readers hold these office hours; they are the ones who give you composition scores!
- Optional guerrilla section Monday 6 pm-8pm, meeting outside of Soda 310
- Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
- Closed book, paper-based exam.
- You may bring one hand-written page of notes that you created (front \& back).
- You will have a study guide attached to your exam.
"Midterm information: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm1.html


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
=Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
"Readers hold these office hours; they are the ones who give you composition scores!
- Optional guerrilla section Monday 6 pm-8pm, meeting outside of Soda 310
- Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
- Closed book, paper-based exam.
- You may bring one hand-written page of notes that you created (front \& back).
- You will have a study guide attached to your exam.
"Midterm information: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm1.html
-Review session: Saturday 9/21 (details TBD)


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
"Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
-Readers hold these office hours; they are the ones who give you composition scores!
- Optional guerrilla section Monday 6 pm-8pm, meeting outside of Soda 310
-Midterm 1 is next Monday $9 / 23$ from 7 pm to 9 pm in various locations across campus
-Closed book, paper-based exam.
- You may bring one hand-written page of notes that you created (front \& back).
-You will have a study guide attached to your exam.
"Midterm information: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm1.html
-Review session: Saturday 9/21 (details TBD)
"HKN Review session: Sunday 9/22 (details TBD)


## Announcements

- Homework 2 due Tuesday at 11:59pm
- Project 1 due Thursday at 11:59pm
"Extra debugging office hours in Soda 405: Tuesday 6-8, Wednesday 6-7, Thursday 5-7
-Readers hold these office hours; they are the ones who give you composition scores!
- Optional guerrilla section Monday 6 pm-8pm, meeting outside of Soda 310
- Midterm 1 is next Monday 9/23 from 7pm to 9pm in various locations across campus
-Closed book, paper-based exam.
- You may bring one hand-written page of notes that you created (front \& back).
-You will have a study guide attached to your exam.
"Midterm information: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm1.html
-Review session: Saturday 9/21 (details TBD)
"HKN Review session: Sunday 9/22 (details TBD)
-Review office hours on Monday 9/23 (details TBD)

Recursive Functions

## Recursive Functions

## Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

## Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function again.

## Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function again.


## Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may require applying that function again.


Drawing Hands, by M. C. Escher (lithograph, 1948)

Digit Sums

$$
2+0+1+3=6
$$

## Digit Sums

## $2+0+1+3=6$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.


## Digit Sums

## $2+0+1+3=6$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.
- Useful for typo detection!


## Digit Sums

$$
2+0+1+3=6
$$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.
- Useful for typo detection!

| The Bank of 61 A |
| :---: |
| 1234 5678 9098 7658 <br> OSKI tHE BEAR    |

## Digit Sums

## $2+0+1+3=6$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.
- Useful for typo detection!



## Digit Sums

## $2+0+1+3=6$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9.
- Useful for typo detection!

- Credit cards actually use the Luhn algorithm, which we'll implement after digit_sum.


## Sum Digits Without a While Statement

## Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10
```


## Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
```


## Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
```


## Sum Digits Without a While Statement

```
    def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
```


## Sum Digits Without a While Statement

```
    def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
            return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

- The def statement header is similar to other functions

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
            return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

- The def statement header is similar to other functions

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
            return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
            return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
            return n
    else:
            all_but_last, last = split(n)
            return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
            return n
    else:
            all_but_last, last = split(n)
            return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
-Recursive cases are evaluated with recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
            return n
    else:
            all_but_last, last = split(n)
            return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
-Recursive cases are evaluated with recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
            return n
    else:
            all_but_last, last = split(n)
            return sum_digits(all_but_last) + last
```


## The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
-Recursive cases are evaluated with recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
            return n
    else:
            all_but_last, last = split(n)
            return sum_digits(all_but_last) + last
```

Recursion in Environment Diagrams

## Recursion in Environment Diagrams

```
    1 def fact(n):
        if n == 0:
        return 1
        else:
            return n * fact(n-1)
    fact(3)
```


## Recursion in Environment Diagrams

```
    1 def fact(n):
        if \(n==0:\)
        return 1
        else:
            return \(n\) * fact(n-1)
    fact(3)
```


## Recursion in Environment Diagrams

```
1 def fact(n):
        if n == 0:
        return 1
        else:
            return n * fact(n-1)
    fact(3)
\(\rightarrow 2\) if \(n==0:\) return 1
    6
```

(Demo)

```
Global frame }\longrightarrow\mathrm{ func fact(n)
        fact
    fact
    n 3
fact
    n 2
fact
    n 1
```


## Recursion in Environment Diagrams

```
    1 def fact(n):
m2 if n == 0:
    3 return 1
        else:
            return n * fact(n-1)
    6
    fact(3)
```

- The same function fact is called multiple times.
(Demo)



## Recursion in Environment Diagrams

```
    1 def fact(n):
m2 if n == 0:
                                return 1
        else:
            return n * fact(n-1)
    fact(3)
```

- The same function fact is called multiple times.
(Demo)



## Recursion in Environment Diagrams

```
    1 def fact(n):
    \(\rightarrow 2\) if \(n==0\) :
    3 return 1
        else:
            return \(n\) * fact( \(\mathrm{n}-1\) )
    7 fact(3)
```

- The same function fact is called multiple times.
- Different frames keep track of the different arguments in each call.
(Demo)



## Recursion in Environment Diagrams

```
    1 def fact(n):
\(\rightarrow 2\) if \(n==0:\)
    3 return 1
        else:
            return \(n\) * fact( \(\mathrm{n}-1\) )
    7 fact(3)
```

- The same function fact is called multiple times.
- Different frames keep track of the different arguments in each call.
- What $n$ evaluates to depends upon which is the current environment.
(Demo)



## Recursion in Environment Diagrams

```
    1 def fact(n):
\(\rightarrow 2\) if \(n==0:\)
    3 return 1
        else:
            return \(n\) * fact( \(\mathrm{n}-1\) )
7 fact(3)
```

- The same function fact is called multiple times.
- Different frames keep track of the different arguments in each call.
- What $n$ evaluates to depends upon which is the current environment.
(Demo)



## Recursion in Environment Diagrams

```
    1 def fact(n):
m2 if n == 0:
3 return 1
        else:
            return n * fact(n-1)
fact(3)
```

- The same function fact is called multiple times.
- Different frames keep track of the different arguments in each call.
-What $n$ evaluates to depends upon which is the current environment.
- Each call to fact solves a simpler problem than the last: smaller $n$.
(Demo)


[^0]
## Iteration vs Recursion

## Iteration vs Recursion

Iteration is a special case of recursion

## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:

## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
        total, k = total*k, k+1
    return total
```


## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:
Using recursion:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```


## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Using recursion:

```
def fact(n):
    if n == 0:
            return 1
    else:
            return n * fact(n-1)
```


## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Using recursion:

```
def fact(n):
    if n == 0:
            return 1
    else:
            return n * fact(n-1)
```


## Math:

## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Math: $\quad n!=\prod_{k=1}^{n} k$

Using recursion:

```
def fact(n):
    if n == 0:
            return 1
    else:
            return n * fact(n-1)
```


## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Math: $\quad n!=\prod_{k=1}^{n} k$

Using recursion:

```
def fact(n):
    if n == 0:
            return 1
        else:
            return n * fact(n-1)
```

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}
$$

## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Math: $\quad n!=\prod_{k=1}^{n} k$

Using recursion:

```
def fact(n):
    if n == 0:
            return 1
        else:
            return n * fact(n-1)
```

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}
$$

Names:

## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Math: $\quad n!=\prod_{k=1}^{n} k$

$$
n!=\prod_{k=1}^{n} k
$$

Using recursion:

```
def fact(n):
        if n == 0:
            return 1
        else:
            return n * fact(n-1)
```

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}
$$

Names:
n, total, k, fact_iter

## Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using iterative control:

```
def fact_iter(n):
    total, k = 1, 1
    while k <= n:
            total, k = total*k, k+1
    return total
```

Math: $\quad n!=\prod_{k=1}^{n} k$

$$
n!=\prod_{k=1}^{n} k
$$

Names:
n, total, k, fact_iter

Using recursion:

```
def fact(n):
        if n == 0:
            return 1
        else:
            return n * fact(n-1)
```

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}
$$

n, fact

## Verifying Recursive Functions

The Recursive Leap of Faith

## The Recursive Leap of Faith



## The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```



Photo by Kevin Lee, Preikestolen, Norway

## The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?


## The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case.


## The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case.
2. Treat fact as a functional abstraction!


## The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case.
2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct.


## The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case.
2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct.
4. Verify that fact(n) is correct, assuming that fact(n-1) correct.


# Mutual Recursion 

The Luhn Algorithm

## The Luhn Algorithm

Used to verify credit card numbers

## The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

## The Luhn Algorithm

Used to verify credit card numbers

From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

1. From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$ ) , then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$ ).

## The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

1. From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$ ), then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$ ).
2. Take the sum of all the digits.

## The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

1. From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$ ), then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$ ).
2. Take the sum of all the digits.


## The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

1. From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$ ), then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$ ).
2. Take the sum of all the digits.

| 1 | 3 | 8 | 7 | 4 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | $1+6=7$ | 7 | 8 | 3 |

## The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

1. From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$ ), then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$ ).
2. Take the sum of all the digits.

| 1 | 3 | 8 | 7 | 4 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | $1+6=7$ | 7 | 8 | 3 |

## The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

1. From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$ ) , then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$ ).
2. Take the sum of all the digits.

| 1 | 3 | 8 | 7 | 4 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | $1+6=7$ | 7 | 8 | 3 |

The Luhn sum of a valid credit card number is a multiple of 10.

## The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

1. From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$ ), then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$ ).
2. Take the sum of all the digits.

| 1 | 3 | 8 | 7 | 4 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | $1+6=7$ | 7 | 8 | 3 |

The Luhn sum of a valid credit card number is a multiple of 10.

## Recursion and Iteration

Converting Recursion to Iteration

## Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

## Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

## Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


## Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
            What's left to sum
```


## Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
                            A partial sum
```

What's left to sum

## Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
                            A partial sum
What's left to sum
```

Converting Iteration to Recursion

## Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

## Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

## Converting Iteration to Recursion

```
More formulaic: Iteration is a special case of recursion.
Idea: The state of an iteration can be passed as arguments.
def sum_digits_iter(n):
    digit sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last
    return digit_sum
```


## Converting Iteration to Recursion

```
More formulaic: Iteration is a special case of recursion.
Idea: The state of an iteration can be passed as arguments.
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
            n, last = split(n)
            digit_sum = digit_sum + last
    return digit_sum
def sum_digits_rec(n, digit_sum):
    if n == 0:
        return digit_sum
    else:
        n, last = split(n)
        return sum_digits_rec(n, digit_sum + last)
```


## Converting Iteration to Recursion

```
More formulaic: Iteration is a special case of recursion.
Idea: The state of an iteration can be passed as arguments.
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
            digit sum = digit sum + last
                            Updates via assignment become...
    return digit_sum
def sum_digits_rec(n, digit_sum):
    if n == 0:
        return digit_sum
    else:
        n, last = split(n)
        return sum_digits_rec(n, digit_sum + last)
```


## Converting Iteration to Recursion

```
More formulaic: Iteration is a special case of recursion.
Idea: The state of an iteration can be passed as arguments.
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
            digit_sum = digit sum + last
                Updates via assignment become...
    return digit_sum
```

```
def sum_digits_rec(n, digit_sum) (n){ ...arguments to a recursive call
```

def sum_digits_rec(n, digit_sum) (n){ ...arguments to a recursive call
return digit_sum
return digit_sum
else:
else:
n, last = split(n)
n, last = split(n)
return sum_digits_rec(n, digit_sum + last)

```
        return sum_digits_rec(n, digit_sum + last)
```


[^0]:    Example: http://goo.gl/XOP9ps

