61A Lecture 6

Friday, September 13

Announcements

Announcements

- Homework 2 due Tuesday 9/17 @ 11:59pm

Announcements

- Homework 2 due Tuesday 9/17 @ 11:59pm
- Project 2 due Thursday 9/19 @ 11:59pm

Announcements

- Homework 2 due Tuesday 9/17 @ 11:59pm
- Project 2 due Thursday 9/19 @ 11:59pm
- Optional Guerrilla section next Monday for students to master higher-order functions

Announcements

-Homework 2 due Tuesday 9/17 @ 11:59pm
-Project 2 due Thursday 9/19 @ 11:59pm

- Optional Guerrilla section next Monday for students to master higher-order functions
-Organized by Andrew Huang and the readers

Announcements

- Homework 2 due Tuesday 9/17 @ 11:59pm
-Project 2 due Thursday 9/19 @ 11:59pm
- Optional Guerrilla section next Monday for students to master higher-order functions
"Organized by Andrew Huang and the readers
"Work in a group on a problem until everyone in the group understands the solution

Announcements

- Homework 2 due Tuesday 9/17 @ 11:59pm
-Project 2 due Thursday 9/19 @ 11:59pm
- Optional Guerrilla section next Monday for students to master higher-order functions
"Organized by Andrew Huang and the readers
"Work in a group on a problem until everyone in the group understands the solution
-Midterm 1 on Monday 9/23 from 7pm to 9pm

Announcements

- Homework 2 due Tuesday 9/17 @ 11:59pm
- Project 2 due Thursday 9/19 @ 11:59pm
- Optional Guerrilla section next Monday for students to master higher-order functions
-Organized by Andrew Huang and the readers
-Work in a group on a problem until everyone in the group understands the solution
- Midterm 1 on Monday 9/23 from 7pm to 9pm
-Details and review materials will be posted early next week

Announcements

- Homework 2 due Tuesday 9/17 @ 11:59pm
- Project 2 due Thursday 9/19 @ 11:59pm
- Optional Guerrilla section next Monday for students to master higher-order functions
-Organized by Andrew Huang and the readers
-Work in a group on a problem until everyone in the group understands the solution
- Midterm 1 on Monday 9/23 from 7pm to 9pm
-Details and review materials will be posted early next week
-There will be a web form for students who cannot attend due to a conflict

Lambda Expressions

Lambda Expressions

Lambda Expressions
>>> ten $=10$

Lambda Expressions
>>> ten $=10$
>>> square $=x * x$

Lambda Expressions

Lambda Expressions

```
>>> ten = 10 An expression: this one
                        evaluates to a number
>>> square =x*x
>>> square = lambda x: x * x
```


Lambda Expressions

Lambda Expressions

Lambda Expressions

Lambda expressions are not common in Python, but important in general

Lambda Expressions

Lambda expressions are not common in Python, but important in general
Lambda expressions in Python cannot contain statements at all!

Lambda Expressions Versus Def Statements

Lambda Expressions Versus Def Statements

VS

Lambda Expressions Versus Def Statements

Lambda Expressions Versus Def Statements

Lambda Expressions Versus Def Statements

def square(x): return x * x

- Both create a function with the same domain, range, and behavior.

Lambda Expressions Versus Def Statements

def square(x): return x * x

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the environment in which they were defined.

Lambda Expressions Versus Def Statements

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the environment in which they were defined.
- Both bind that function to the name square.

Lambda Expressions Versus Def Statements

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the environment in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.

Lambda Expressions Versus Def Statements

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the environment in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.

```
Global frame }\longrightarrow\mathrm{ func }\lambda(x
    square
```

λ

x	2
Return	
value	4

Lambda Expressions Versus Def Statements

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the environment in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.

```
Global frame }\longrightarrow\mathrm{ func }\lambda(x
    square
```

λ

x	2
$\begin{aligned} \text { Return } \\ \text { value }\end{aligned}$	4

Lambda Expressions Versus Def Statements

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the environment in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.

Lambda Expressions Versus Def Statements

- Both create a function with the same domain, range, and behavior.
- Both functions have as their parent the environment in which they were defined.
- Both bind that function to the name square.
- Only the def statement gives the function an intrinsic name.

Example: http://goo.gl/XH54uE

Currying

Function Currying

Function Currying

```
def make_adder(n):
return lambda k: n + k
```


Function Currying

```
def make_adder(n):
    return lambda k: n + k
```

```
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```


Function Currying

```
def make_adder(n):
return lambda k: n + k
```

```
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general
relationship between
these functions

Function Currying

```
def make_adder(n):
return lambda k: n + k
```

```
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general relationship between these functions
(Demo)

Function Currying

```
def make_adder(n):
    return lambda k: n + k
```

```
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

```
        There's a general
        relationship between
        these functions
```

 (Demo)
 Currying: Transforming a multi-argument function into a single-argument, higher-order function.

Function Currying

```
def make_adder(n):
    return lambda k: n + k
```

```
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

```
        There's a general
        relationship between
        these functions
```

 (Demo)
 Currying: Transforming a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schönfinkel and re-discovered by Haskell Curry.

Function Currying

```
def make_adder(n):
    return lambda k: n + k
```

```
>>> make_adder(2)(3)
5
>>> add(2, 3)
5
```

There's a general relationship between these functions
(Demo)

Currying: Transforming a multi-argument function into a single-argument, higher-order function.

Currying was discovered by Moses Schönfinkel and re-discovered by Haskell Curry.

Schönfinkeling?

Newton's Method

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

$$
f(x)=x^{2}-2
$$

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Newton's Method Background

Quickly finds accurate approximations to zeroes of differentiable functions!

Application: a method for computing square roots, cube roots, etc.
The positive zero of $f(x)=x^{2}-a$ is \sqrt{a}. (We're solving the equation $x^{2}=a$.)

Newton's Method

Given a function f and initial guess x,

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x:

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$
3. Update guess x to be:
$x-\frac{f(x)}{f^{\prime}(x)}$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$
3. Update guess x to be:
$x-\frac{f(x)}{f^{\prime}(x)}$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$
3. Update guess x to be:
$x-\frac{f(x)}{f^{\prime}(x)}$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$
3. Update guess x to be:
$x-\frac{f(x)}{f^{\prime}(x)}$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$
3. Update guess x to be:
$x-\frac{f(x)}{f^{\prime}(x)}$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$
3. Update guess x to be:
$x-\frac{f(x)}{f^{\prime}(x)}$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$
3. Update guess x to be:
$x-\frac{f(x)}{f^{\prime}(x)}$

Newton's Method

Given a function f and initial guess x,

Repeatedly improve x :

1. Compute the value of f at the guess: $f(x)$
2. Compute the derivative of f at the guess: $f^{\prime}(x)$
3. Update guess x to be:

$$
x-\frac{f(x)}{f^{\prime}(x)}
$$

Finish when $f(x)=0$ (or close enough)

Using Newton's Method

Using Newton's Method

How to find the square root of 2 ?

Using Newton's Method

How to find the square root of 2 ?

$$
\begin{aligned}
& \text { >>> } f=\text { lambda } x: x * x-2 \\
& \text { >>> df }=\text { lambda x: } 2 * x \\
& \text { >>> find_zero(f, df) } \\
& 1.4142135623730951
\end{aligned}
$$

Using Newton's Method

How to find the square root of 2 ?

>>> $f=$ lambda $x: x * x-2$
>>> df = lambda $x: 2 * x$
>>> find_zero(f, df)
1.4142135623730951

Using Newton's Method

How to find the square root of 2 ?


```
>> f = lambda \(x\) : \(x * x-2\)
\[
f(x)=x^{2}-2
\]
>>> df \(=\) lambda \(x: 2 * x\) \(f^{\prime}(x)=2 x\)
>>> find_zero(f, df)
```

1.4142135623730951

Using Newton's Method

How to find the square root of 2 ?

Using Newton's Method

How to find the square root of 2 ?

How to find the cube root of 729 ?

Using Newton's Method

How to find the square root of 2 ?

How to find the cube root of 729 ?

Using Newton's Method

How to find the square root of 2 ?

How to find the cube root of $729 ?$

>>> $\mathrm{g}=$ lambda $\mathrm{x}: \mathrm{x} * \mathrm{x} * \mathrm{x}-729$
>>> dg = lambda $x: 3 * x * x$
>>> find_zero(g, dg)
9.0

Using Newton's Method

How to find the square root of 2 ?

How to find the cube root of $729 ?$

Iterative Improvement

Special Case: Square Roots

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

$$
x=\frac{x+\frac{a}{x}}{2}
$$

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

$$
x=\frac{x+\frac{a}{x}}{2}
$$

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

$$
x=\frac{x+\frac{a}{x}}{2}
$$

Implementation questions:

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

$$
x=\frac{x+\frac{a}{x}}{2}
$$

Implementation questions:
What guess should start the computation?

Special Case: Square Roots

How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

Update:

$$
x=\frac{x+\frac{a}{x}}{2}
$$

Implementation questions:
What guess should start the computation?
How do we know when we are finished?

Special Case: Cube Roots

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:

Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

Update:

$$
x=\frac{2 \cdot x+\frac{a}{x^{2}}}{3}
$$

Special Case: Cube Roots

How to compute cube_root(a)
Idea: Iteratively refine a guess x about the cube root of a

Update:

$$
x=\frac{2 \cdot x+\frac{a}{x^{2}}}{3}
$$

Implementation questions:

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:

$$
x=\frac{2 \cdot x+\frac{a}{x^{2}}}{3}
$$

Implementation questions:

What guess should start the computation?

Special Case: Cube Roots

How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

Update:

$$
x=\frac{2 \cdot x+\frac{a}{x^{2}}}{3}
$$

Implementation questions:

What guess should start the computation?

How do we know when we are finished?

Implementing Newton's Method

