
61A Lecture 5

Wednesday, September 11

Announcements

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

3 points; graded for correctness.

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

3 points; graded for correctness.

Submit in the same way that you submit homework assignments.

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

3 points; graded for correctness.

Submit in the same way that you submit homework assignments.

If you receive 0/3, you will need to talk to the course staff or be dropped.

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

3 points; graded for correctness.

Submit in the same way that you submit homework assignments.

If you receive 0/3, you will need to talk to the course staff or be dropped.

Open-computer: You can use the Python interpreter, watch course videos, and read the
online text (http://composingprograms.com).

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

3 points; graded for correctness.

Submit in the same way that you submit homework assignments.

If you receive 0/3, you will need to talk to the course staff or be dropped.

Open-computer: You can use the Python interpreter, watch course videos, and read the
online text (http://composingprograms.com).

No external resources: Please don't search for answers, talk to your classmates, etc.

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

3 points; graded for correctness.

Submit in the same way that you submit homework assignments.

If you receive 0/3, you will need to talk to the course staff or be dropped.

Open-computer: You can use the Python interpreter, watch course videos, and read the
online text (http://composingprograms.com).

No external resources: Please don't search for answers, talk to your classmates, etc.

• Homework 2 due Tuesday 9/17 at 5pm.

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

3 points; graded for correctness.

Submit in the same way that you submit homework assignments.

If you receive 0/3, you will need to talk to the course staff or be dropped.

Open-computer: You can use the Python interpreter, watch course videos, and read the
online text (http://composingprograms.com).

No external resources: Please don't search for answers, talk to your classmates, etc.

• Homework 2 due Tuesday 9/17 at 5pm.

• Project 1 due Thursday 9/19 at 11:59pm.

2

Announcements

• Take-home quiz released Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.

http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/quiz1.html

3 points; graded for correctness.

Submit in the same way that you submit homework assignments.

If you receive 0/3, you will need to talk to the course staff or be dropped.

Open-computer: You can use the Python interpreter, watch course videos, and read the
online text (http://composingprograms.com).

No external resources: Please don't search for answers, talk to your classmates, etc.

• Homework 2 due Tuesday 9/17 at 5pm.

• Project 1 due Thursday 9/19 at 11:59pm.

• Solutions to homeworks: http://inst.eecs.berkeley.edu/~cs61a/fa13/hw/solutions

2

Office Hours: You Should Go!

3

Office Hours: You Should Go!

You are not alone!

3

Office Hours: You Should Go!

You are not alone!

3

Office Hours: You Should Go!

You are not alone!

http://inst.eecs.berkeley.edu/~cs61a/fa13/staff.html

3

The Purpose of Higher-Order Functions

4

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in
our programming language.

4

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in
our programming language.

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

4

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in
our programming language.

Higher-order functions:

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

4

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in
our programming language.

Higher-order functions:

• Express general methods of computation

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

4

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in
our programming language.

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

4

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in
our programming language.

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

• Separate concerns among functions

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

4

Environments for Higher-Order Functions

Environments Enable Higher-Order Functions

Higher-order function: A function that takes a function as an argument value or returns
a function as a return value

6

Environments Enable Higher-Order Functions

Functions as arguments:

Higher-order function: A function that takes a function as an argument value or returns
a function as a return value

6

Environments Enable Higher-Order Functions

Functions as arguments:

Our current evaluation rules handle that case already!

Higher-order function: A function that takes a function as an argument value or returns
a function as a return value

6

Environments Enable Higher-Order Functions

Functions as arguments:

Our current evaluation rules handle that case already!

We'll discuss an example today

Higher-order function: A function that takes a function as an argument value or returns
a function as a return value

6

Environments Enable Higher-Order Functions

Functions as arguments:

Functions as return values:

Our current evaluation rules handle that case already!

We'll discuss an example today

Higher-order function: A function that takes a function as an argument value or returns
a function as a return value

6

Environments Enable Higher-Order Functions

Functions as arguments:

Functions as return values:

Our current evaluation rules handle that case already!

We'll discuss an example today

We need to extend our rules a little

Higher-order function: A function that takes a function as an argument value or returns
a function as a return value

6

Environments Enable Higher-Order Functions

Functions as arguments:

Functions as return values:

Our current evaluation rules handle that case already!

We'll discuss an example today

We need to extend our rules a little

Functions need to know where they were defined

Higher-order function: A function that takes a function as an argument value or returns
a function as a return value

6

Environments Enable Higher-Order Functions

Functions as arguments:

Functions as return values:

Our current evaluation rules handle that case already!

We'll discuss an example today

We need to extend our rules a little

Functions need to know where they were defined

Almost everything stays the same

Higher-order function: A function that takes a function as an argument value or returns
a function as a return value

6

Environments Enable Higher-Order Functions

Functions as arguments:

Functions as return values:

Our current evaluation rules handle that case already!

We'll discuss an example today

We need to extend our rules a little

Functions need to know where they were defined

Almost everything stays the same

Higher-order function: A function that takes a function as an argument value or returns
a function as a return value

(demo)

6

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

func apply_twice(f, x)

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

func apply_twice(f, x) func square(x)

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

func apply_twice(f, x) func square(x) 2

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

func apply_twice(f, x) func square(x) 2

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

func apply_twice(f, x) func square(x) 2

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

func apply_twice(f, x) func square(x) 2

Applying a user-defined function:

• Create a new frame
• Bind formal parameters

(f & x) to arguments
• Execute the body:

return f(f(x))

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

2

1

func apply_twice(f, x) func square(x) 2

Applying a user-defined function:

• Create a new frame
• Bind formal parameters

(f & x) to arguments
• Execute the body:

return f(f(x))

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

2

1

func apply_twice(f, x) func square(x) 2

Applying a user-defined function:

• Create a new frame
• Bind formal parameters

(f & x) to arguments
• Execute the body:

return f(f(x))

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

2

1

func apply_twice(f, x) func square(x) 2

• Functions are values.

Applying a user-defined function:

• Create a new frame
• Bind formal parameters

(f & x) to arguments
• Execute the body:

return f(f(x))

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

2

1

func apply_twice(f, x) func square(x) 2

• Functions are values.

• Names can refer to functions (just as they can refer to any values).

Applying a user-defined function:

• Create a new frame
• Bind formal parameters

(f & x) to arguments
• Execute the body:

return f(f(x))

Names can be Bound to Functional Arguments

Example: http://goo.gl/mwVuIF 7

2

1

func apply_twice(f, x) func square(x) 2

• Functions are values.

• Names can refer to functions (just as they can refer to any values).

• Multiple names can all refer to the same function, even in different frames.

Applying a user-defined function:

• Create a new frame
• Bind formal parameters

(f & x) to arguments
• Execute the body:

return f(f(x))

Discussion Question

What is the value of the final expression below?

8

def repeat(f, x):
 while f(x) != x:
 x = f(x)
 return x

def g(y):
 return (y + 5) // 3

repeat(g, 5)

Example: http://goo.gl/EDiOIr

Discussion Question

What is the value of the final expression below?

8

def repeat(f, x):
 while f(x) != x:
 x = f(x)
 return x

def g(y):
 return (y + 5) // 3

repeat(g, 5)

Example: http://goo.gl/EDiOIr

Discussion Question

What is the value of the final expression below?

8

def repeat(f, x):
 while f(x) != x:
 x = f(x)
 return x

def g(y):
 return (y + 5) // 3

repeat(g, 5)
If you think

there's an error

Example: http://goo.gl/EDiOIr

Environments for Nested Definitions

(Demo)

Environment Diagrams for Nested Def Statements

Example: 10

Environment Diagrams for Nested Def Statements
Nested def

Example: 10

Environment Diagrams for Nested Def Statements
Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements
Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements
Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements
Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements
Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements

2

1

3
Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements

2

1

3
Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame (often global)

Nested def

Example:

Frame label

10

Environment Diagrams for Nested Def Statements

2

1

3

• Every user-defined function has
a parent frame (often global)

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame (often global)

• The parent of a frame is the
parent of the function called

Nested def

Example:

Frame label

10

An Environment is a Sequence of Frames

11

2

1

3

An Environment is a Sequence of Frames

11

2

1

3

1

2

An Environment is a Sequence of Frames

11

2

1

3

1

2 1

An Environment is a Sequence of Frames

A three-frame
environment

11

2

1

3

1

2 1

An Environment is a Sequence of Frames

A three-frame
environment

A two-frame
environment

11

2

1

3

1

2 1

An Environment is a Sequence of Frames

A three-frame
environment

A two-frame
environment

The global
environment

11

2

1

3

1

2 1

An Environment is a Sequence of Frames

A local frame extends the environment that begins with its parent.

A three-frame
environment

A two-frame
environment

The global
environment

11

2

1

3

1

2 1

An Environment is a Sequence of Frames

A local frame extends the environment that begins with its parent.

A three-frame
environment

A two-frame
environment

The global
environment

11

2

1

3

1

2 1

When a frame or function
has no parent label

[parent=___]

 then its parent is
the global frame

An Environment is a Sequence of Frames

A local frame extends the environment that begins with its parent.

A three-frame
environment

A two-frame
environment

The global
environment

11

2

1

3

1

2 1

Always
extends

When a frame or function
has no parent label

[parent=___]

 then its parent is
the global frame

An Environment is a Sequence of Frames

A local frame extends the environment that begins with its parent.

Always
extends

A three-frame
environment

A two-frame
environment

The global
environment

11

2

1

3

1

2 1

Always
extends

When a frame or function
has no parent label

[parent=___]

 then its parent is
the global frame

An Environment is a Sequence of Frames

A local frame extends the environment that begins with its parent.

Always
extends

A three-frame
environment

A two-frame
environment

The global
environment

11

2

1

3

1

2 1

Always
extends

When a frame or function
has no parent label

[parent=___]

 then its parent is
the global frame

We don't bother to
label frames that
aren't parents

How to Draw an Environment Diagram

12

When a function is defined:

How to Draw an Environment Diagram

12

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)

How to Draw an Environment Diagram

12

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)

2. If the parent frame of that function is not the global frame, add matching labels to
the parent frame and the function value (such as f1, f2, or f3).

How to Draw an Environment Diagram

12

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)

2. If the parent frame of that function is not the global frame, add matching labels to
the parent frame and the function value (such as f1, f2, or f3).

How to Draw an Environment Diagram

12

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)

2. If the parent frame of that function is not the global frame, add matching labels to
the parent frame and the function value (such as f1, f2, or f3).

3. Bind <name> to the function value in the first frame of the current environment.

How to Draw an Environment Diagram

12

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)

2. If the parent frame of that function is not the global frame, add matching labels to
the parent frame and the function value (such as f1, f2, or f3).

3. Bind <name> to the function value in the first frame of the current environment.

How to Draw an Environment Diagram

When a function is called:

12

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)

2. If the parent frame of that function is not the global frame, add matching labels to
the parent frame and the function value (such as f1, f2, or f3).

3. Bind <name> to the function value in the first frame of the current environment.

How to Draw an Environment Diagram

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

12

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)

2. If the parent frame of that function is not the global frame, add matching labels to
the parent frame and the function value (such as f1, f2, or f3).

3. Bind <name> to the function value in the first frame of the current environment.

How to Draw an Environment Diagram

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. If the function has a parent label, copy it to the local frame: [parent=<label>]

12

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)

2. If the parent frame of that function is not the global frame, add matching labels to
the parent frame and the function value (such as f1, f2, or f3).

3. Bind <name> to the function value in the first frame of the current environment.

How to Draw an Environment Diagram

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. If the function has a parent label, copy it to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

12

When a function is defined:

1. Create a function value: func <name>(<formal parameters>)

2. If the parent frame of that function is not the global frame, add matching labels to
the parent frame and the function value (such as f1, f2, or f3).

3. Bind <name> to the function value in the first frame of the current environment.

How to Draw an Environment Diagram

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. If the function has a parent label, copy it to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

4. Execute the body of the function in the environment that starts with the local frame.

12

Local Names

(Demo)

Local Names are not Visible to Other (Non-Nested) Functions

Example: http://goo.gl/b6WvUc 14

Local Names are not Visible to Other (Non-Nested) Functions

Example: http://goo.gl/b6WvUc 14

Local Names are not Visible to Other (Non-Nested) Functions

2

1

Example: http://goo.gl/b6WvUc 14

Local Names are not Visible to Other (Non-Nested) Functions

2

1

Example: http://goo.gl/b6WvUc 14

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

Example: http://goo.gl/b6WvUc 14

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Example: http://goo.gl/b6WvUc 14

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

Example: http://goo.gl/b6WvUc 14

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

• An environment is a sequence of frames.

Example: http://goo.gl/b6WvUc 14

Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not

found

“y” is not
found, again

Error

• An environment is a sequence of frames.

• The environment created by calling a top-level function (no def within def) consists
of one local frame, followed by the global frame.

Example: http://goo.gl/b6WvUc 14

Function Composition

(Demo)

The Environment Diagram for Function Composition

Example:
16

The Environment Diagram for Function Composition

Example:
16

The Environment Diagram for Function Composition

Example:
16

The Environment Diagram for Function Composition

Example:
16

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

Example:
16

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

Example:
16

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

Example:
16

The Environment Diagram for Function Composition

Return value of make_adder is
an argument to compose1

Example:
16

The Environment Diagram for Function Composition

2

1

3

Return value of make_adder is
an argument to compose1

Example:
16

The Environment Diagram for Function Composition

2

1

3

Return value of make_adder is
an argument to compose1

Example:
16

The Environment Diagram for Function Composition

2

1

3

1

2

3

Return value of make_adder is
an argument to compose1

Example:
16

The Game of Hog

(Demo)

