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Open-computer: You can use the Python interpreter, watch course videos, and read the 
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Environments Enable Higher-Order Functions

Functions as arguments:

Functions as return values:

Our current evaluation rules handle that case already!

We'll discuss an example today

We need to extend our rules a little

Functions need to know where they were defined

Almost everything stays the same

Higher-order function: A function that takes a function as an argument value or returns 
a function as a return value

(demo)
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func apply_twice(f, x) func square(x) 2

• Functions are values.

• Names can refer to functions (just as they can refer to any values).

• Multiple names can all refer to the same function, even in different frames.

Applying a user-defined function:

• Create a new frame
• Bind formal parameters

(f & x) to arguments
• Execute the body:

return f(f(x))
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def repeat(f, x):
    while f(x) != x:
        x = f(x)
    return x

def g(y):
    return (y + 5) // 3

repeat(g, 5)
If you think 

there's an error
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A local frame extends the environment that begins with its parent.

Always 
extends

A three-frame 
environment

A two-frame 
environment

The global 
environment
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2

1

3

1

2 1

Always 
extends

When a frame or function 
has no parent label

[parent=___]

 then its parent is 
the global frame  

We don't bother to 
label frames that 
aren't parents
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the parent frame and the function value (such as f1, f2, or f3).
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How to Draw an Environment Diagram

When a function is called:

1. Add a local frame, titled with the <name> of the function being called.

2. If the function has a parent label, copy it to the local frame: [parent=<label>]

3. Bind the <formal parameters> to the arguments in the local frame.

4. Execute the body of the function in the environment that starts with the local frame.
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Local Names are not Visible to Other (Non-Nested) Functions

2

1
“y” is not 

found

“y” is not 
found, again

Error

• An environment is a sequence of frames.

• The environment created by calling a top-level function (no def within def) consists 
of one local frame, followed by the global frame.

Example: http://goo.gl/b6WvUc 14
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