Announcements

- Homework 1 due Tuesday $9 / 10$ at 5 pm; Late homework is not accepted!

Quiz on Wednesday $9 / 11$ released at 1 pm , due Thursday $9 / 12$ at 11:59pm
Open-computer: You can use the Python interpreter, watch course videos, and read the online text (http://composingprograms.com).
No external resources: Please don't search for answers, talk to your classmates, etc. Content Covered: Lectures through last Friday 9/6; Same topics as Homework 1. Project 1 due next Thursday $9 / 19$ at 11:59pm

Discussion Question

Complete the following definition by placing an expression in \qquad .
def choose(total, selection):
Return the number of ways to choose SELECTION items from TOTAL
choose (n, k) is typically defined in math as: $n!/(n-k)!/ k!$
>> choose (5, 2)
10 >> choose $(20,6)$
38760
ways $=1$
selected $=0$
while selected < selection: selected $=$ selected + ways, total $=$ ways * return ways
\qquad total - 1

Default Arguments

Characteristics of Functions

```
def square(x): #"Return X * X.""n def choose(n, d): 
```

A function's domain is the set of all inputs it might possibly take as arguments.

		n and d are positive integers
	number	greater than or equal to d

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

square of the input
return value is the number of ways to choose d of n items.

A Guide to Designing Function
Give each function exactly one job

Don't repeat yourself (DRY). Implement a process just once, but execute it many times,

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

$\frac{3 \sqrt{3}}{2} r^{2}$
Finding common structure allows for shared implementation

Generalizing Over Computational Processes
The common structure among functions may be a computational process, rather than a number.

$$
\begin{array}{cc}
\sum_{k=1}^{5} k=1+2+3+4+5 & =15 \\
\sum_{k=1}^{5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3} & =225 \\
\sum_{k=1}^{5} \frac{8(4 k-3) \cdot(4 k-1)}{(4)}=\frac{8}{3}+\frac{8}{35}+\frac{8}{99}+\frac{8}{195}+\frac{8}{323} & =3.04
\end{array}
$$

(Demo)

Functions as Return Values

(Demo)

Summation Example

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

The Purpose of Higher-Order Functions
Functions are first-class: Functions can be manipulated as values in our programming language.

Higher-order function: A function that takes a function as an argument value or returns a function as a return value

Higher-order functions:

- Express general methods of computation
- Remove repetition from programs
- Separate concerns among functions

The Game of Hog
(Demo)

