61A Lecture 4

Monday, September 9

Iteration Example

Discussion Question

Complete the following definition by placing an expression in

def choose(total, selection):
"""Return the number of ways to choose SELECTION items from TOTAL.

choose(n, k) is typically defined in math as: n! / (n-k)! / k!

»>> choose(s, 2) n-(n—l)-(n—?)-..,-(n—k‘+1)}
>>> choose (20, 6) /(kil)l(kim' /2/}
38760

ways = 1

selected = 0
while selected < selection:

selected = selected + 1

ways, total = ways * total // selected , total - 1
return ways

Example: http://goo.ql/38ch3o

Announcements

<Homework 1 due Tuesday 9/1@ at 5pm; Late homework is not accepted!
-Quiz on Wednesday 9/11 released at 1pm, due Thursday 9/12 at 11:59pm

Open-computer: You can use the Python interpreter, watch course videos, and read the
online text (http://composingprograms.com).

No external resources: Please don't search for answers, talk to your classmates, etc.
Content Covered: Lectures through last Friday 9/6; Same topics as Homework 1.

-Project 1 due next Thursday 9/19 at 11:59pm

The Fibonacci Sequence
fib

n

predecessor L

current | < A
k[
def fib(n):
Iq
"""Compute the nth Fibonacci number, for n >= 2.""" ’ 233
predecessor, current = @, 1 # First two Fibonacci numbers 377

k =2 # Tracks which Fibonacci number is called current
while k < n:

B> predecessor, current = current,

The next Fibonacci number is the sum of

k=k+1
[the current one and its predecessor

return current

Example: http://goo.ql/vfymhd

Default Arguments

(Demo)

Characteristics of Functions

def square(x):

def choose(n, d):
"Return X * X.

"""Return the number of ways to choose D of N items."""

A function's domain is the set of all inputs it might possibly take as arguments.

5 n and d are positive integers with
% 85 & T n greater than or equal to d.
Designing Functions

A function's range is the set of output values it might possibly return.

return value is a 7 A .
positive number return value is a positive integer

A pure function's behavior is the relationship it creates between input and output.

return value is the

return value is the number of ways
square of the input

to choose d of n items.

A Guide to Designing Function

Give each function exactly one job.

not

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Generalization

Define functions generally.

&R - SRR 1O RN
== w=f]] 2[i «@~m

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape: Higher-Order Functions

Area:

Finding common structure allows for shared implementation

(Demo)

Generalizing Over Computational Processes Summation Example

The common structure among functions may be a computational process, rather than a number. p . N N
‘def cube(k) . i |Function of a single argument
5 ; return pow(k, 3) (not called term)
i ’
Z =1+4+2+3+445 =15 ’ : “o [A formal parameter that will
=1 def summation(n, {term) be bound to a function

sum the fi¥st n terms of a sequence.

) _>>> summation(5, be)
=142 43 4474 5° =225 £ ; —
- The cube function is passed
k=1 total, k = 0, 1 as an argument value
while k <= n:)
B) 8 8 8 total, k = total + term(k), k + 1
a7 —aTaxtae T et 353 = 3.04 return total
kzl“/‘ Sy 1) 3 35 99 195 323 The function bound to ©
=L 5 g 5 g 5 e function bound to term
O @ ar 285 56 0P < B }[gets called here }
(Demo)
Locally Defined Functions
Functions defined within other function bodies are bound to names in a local frame
A function that
returns a function
Functions as Return Values R Sy
"""Return a function that takes one argument k and returns k + n.
>>>{add_three = make_adder(3)i< The name add_three is bound
;>> add_three(?) to a function
{def adder(j A local
,’ég'\.z?:éger def statement
Can refer to names in the
enclosing function
(Demo)
Call Expressions as Operator Expressions The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in
our programming language.

An expression that An expression that

evaluates to a function evaluates to any value

Higher-order function: A function that takes a function as an

Operator Operand argument value or returns a function as a return value

{ make_adder(1)

—_———) } Higher-order functions:

func adder (k)
make_adder (1)
e def make_adder(n): * Remove repetition from programs
def adder(k):
return k + n
return adder

* Express general methods of computation

func make_‘a‘dder(n)

* Separate concerns among functions

The Game of Hog

(Demo)

