
61A Lecture 4

Monday, September 9

Announcements

• Homework 1 due Tuesday 9/10 at 5pm; Late homework is not accepted!

• Quiz on Wednesday 9/11 released at 1pm, due Thursday 9/12 at 11:59pm

Open-computer: You can use the Python interpreter, watch course videos, and read the
online text (http://composingprograms.com).

No external resources: Please don't search for answers, talk to your classmates, etc.

Content Covered: Lectures through last Friday 9/6; Same topics as Homework 1.

• Project 1 due next Thursday 9/19 at 11:59pm

2

Iteration Example

The Fibonacci Sequence

def fib(n):

 """Compute the nth Fibonacci number, for n >= 2."""

 predecessor, current = 0, 1 # First two Fibonacci numbers

 k = 2 # Tracks which Fibonacci number is called current

 while k < n:

 predecessor, current = current, predecessor + current

 k = k + 1

 return current

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

Example: http://goo.gl/vfymhd 4

5

8
13

21
34

3

The next Fibonacci number is the sum of
the current one and its predecessor

21
1

def choose(total, selection):
 """Return the number of ways to choose SELECTION items from TOTAL.

 choose(n, k) is typically defined in math as: n! / (n-k)! / k!

 >>> choose(5, 2)
 10
 >>> choose(20, 6)
 38760
 """

Discussion Question

Complete the following definition by placing an expression in ______________________.

5

 ways = 1

 selected = 0

 while selected < selection:
 selected = selected + 1

 ways, total = ways * ______________________, total - 1
 return ways

n · (n� 1) · (n� 2) · . . . · (n� k + 1)

k · (k � 1) · (k � 2) · . . . · 2 · 1

total // selected

... ...

Example: http://goo.gl/38ch3o

Default Arguments

(Demo)

Designing Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

Characteristics of Functions

8

def square(x):
 """Return X * X."""

def choose(n, d):
 """Return the number of ways to choose D of N items."""

x is a number n and d are positive integers with
n greater than or equal to d.

return value is a
positive number return value is a positive integer

return value is the
square of the input

return value is the number of ways
to choose d of n items.

Give each function exactly one job.

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

not

A Guide to Designing Function

9

Generalization

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

11

(Demo)

Higher-Order Functions

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

13

(Demo)

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called term)

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 53

14

Functions as Return Values

(Demo)

Locally Defined Functions

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

A function that
returns a function

A local
def statement

The name add_three is bound
to a function

Can refer to names in the
enclosing function

Functions defined within other function bodies are bound to names in a local frame

16

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to any value

17

def make_adder(n):
 def adder(k):
 return k + n
 return adder

2

3

make_adder(1)
func adder(k)

func make_adder(n) 1

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in
our programming language.

Higher-order functions:

• Express general methods of computation

• Remove repetition from programs

• Separate concerns among functions

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

18

The Game of Hog

(Demo)

