61A Lecture 4

Monday, September 9

Announcements

Homework 1 due Tuesday 9/10 at 5pm; Late homework is not accepted!
Quiz on Wednesday 9/11 released at 1pm, due Thursday 9/12 at 11:59pm

Open—-computer: You can use the Python interpreter, watch course videos, and read the
online text (http://composingprograms.com).

No external resources: Please don't search for answers, talk to your classmates, etc.
Content Covered: Lectures through last Friday 9/6; Same topics as Homework 1.

Project 1 due next Thursday 9/19 at 11:59pm

lteration Example

The Fibonacci Sequence

fib
n
predecessor
current ~ S,
k L
def fib(n): E
"""Compute the nth Fibonacci number, for n >= 2.""" % 23
predecessor, current =0, 1 # First two Fibonacci numbers ’ 327

k = 2 # Tracks which Fibonacci number is called current

while k < n:

B> predecessor, current = current,i predecessor + current

k =k +1 [A

The next Fibonacci number is the sum of

return current the current one and its predecessor

Example: http://goo.gl/vfymhd

Discussion Question

Complete the following definition by placing an expression in

def choose(total, selection):
"""Return the number of ways to choose SELECTION items from TOTAL.

choose(n, k) is typically defined in math as: n! / (n-k)! / k!

A
;:>cMm&ﬂ5,2) n-(n-1)-(n-2)- ... -(n—k+1)
(k—=1)-(k—=2).- .. .92.
>>> choose (20, 6) (k) (k 2) /?/}
38760
ways = 1

selected = 0
while selected < selection:

selected = selected + 1

ways, total = ways * total // selected , total - 1
return ways

Example: http://goo0.gl/38ch30

Default Arguments

(Demo)

Designing Functions

Characteristics of Functions

def square(x): def choose(n, d):

"""Return X * X.""" """Return the number of ways to choose D of N items.

A function's domain is the set of all inputs it might possibly take as arguments.

n and d are positive integers with

X 1s a number n greater than or equal to d.

A function's range is the set of output values it might possibly return.

return value 1is a

positive number return value is a positive integer

A pure function's behavior is the relationship it creates between input and output.

return value 1s the return value is the number of ways
square of the input to choose d of n items.

min

A Guide to Designing Function

Give each function exactly one job.

not

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

Define functions generally.

Generalization

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area: iy T

Finding common structure allows for shared implementation

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

5
=1+4243+4+5 =15
k=1
5 o s
d =13 42°43% + 4%+ 5 = 225
k=1

P8
:— — .4
: 3+35+99+195+323 3-0

Summation Example

cube(k): “‘iiFunction of a single argument}
return pow(k, 3) | (not called term)

) R i " A formal parameter that will
summation(n, term be bound to a function

Sum the first 'n terms of a sequence.

225
TR The cube function is passed }
0, 1

total, k = 0, as an argument value

while k <= n: _ .
total, k = total + term(k), k + 1

return total A

[O + 13 + 23 + 33 + 43 + 53 } [The function bound to term }

gets called here

Functions as Return Values

(Demo)

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

A function that
returns a function

"""Return a function that takes one argument k and returns k + n.

>>>gééam£BEéém;"ﬁéké:é&&éE(ﬁf%i:The name add_three is bound}

--- to a function

7

{def adder(k): |

:~ returnl: _]_(____"_'___1_'1::‘,: A .Loca-l.
Eé%ﬁfﬁ”é&&gf“A """ def statement

Can refer to names in the
enclosing function

Call Expressions as Operator Expressions

An expression that
evaluates to a function

An expression that
evaluates to any value

V V
Operator Operand
[Imake_agder(l)l 2) J
func adder (k) 2

-

[__ make_adder(1)

'y

func maké:édder(n)

1

def make adder(n):
def adder(k):
return k + n
return adder

The Purpose of Higher-Order Functions

Functions are first-class: Functions can be manipulated as values in
our programming language.

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Higher—order functions:
e Express general methods of computation
e Remove repetition from programs

e Separate concerns among functions

The Game of Hog

(Demo)

