61A Lecture 3

Friday, September 6

Announcements

Homework 1 is due next Tuesday at 5pm (no email when you submit).
Homework is graded for effort.
Take—-home quiz released next Wednesday 9/11 at 1pm, due Thursday 9/12 at 11:59pm.
3 points, graded for correctness.
Similar in format to a homework assignment.
If you receive 0/3, you will need to talk to the course staff or be dropped.

Open—-computer: You can use the Python interpreter, watch course videos, and read the
online text (http://composingprograms.com).

No external resources: Please don't search for answers, talk to your classmates, etc.
Project 1 posted this Friday, due Thursday 9/19 at 11:59pm.

Demo during next lecture

Multiple Environments

Life Cycle of a User-Defined Function

[Formal parameter]

_______________________ e Return
Def statement: square((X:): expression
pef L |returnimul(x, x) |
statement P!
[_;;dy (return statement)]
i o A operand: 2+2
Call expression: ;squareQ2+2}<:{aEgument: 4 }
______ A
operator: square
function: func square(x)
Calling/Applying: 4P isquare(x)i |

AT = e

[Argument j7 [Signature N%gj

[Return value j

What happens?

A new function is created!

Name bound to that function
in the current frame

Operator & operands evaluated

Function (value of operator)
called on arguments

(values of operands)

A new frame is created!

Parameters bound to arguments

Body is executed in that new
environment

Multiple Environments in One Diagram!

from operator import mul Global frame func mul(...)
def square(x): /‘—)
mul

return mul(x, Xx) /—>func square(x)
square

—) square(square(3))

[square(square(3))]
func sqﬁére(x)
square(3
func sqﬁére(x) 3

Example: http://goo.gl/XVtEms

Multiple Environments in One Diagram!

from operator import mul Global frame func mul(...)
def square(x): mul
-—) return mul(x, Xx) func square(x)
square(square(3)) square
square
X 3
[square(square(3))]
square(3)”
ITO—H—QI—|
func square(x) 3

Example: http://goo.gl/XVtEms

Multiple Environments in One Diagram!

from operator import mul

def square(x):

-—) return mul(x, X)
square(square(3))

81

[‘square(square(3))

U ¥ (gl

square(3)

\
'Y

func sqﬁére(x)

3

0 Global frame func mul(...)

mul
func square(x)

square

square

X |3

Return 9
value

square

An environment is a sequence of frames.

e The global frame alone

e A local, then the global frame

Example: http://goo.gl/XVtEms

Names Have No Meaning Without Environments

from operator import mul 0 Global frame func mul(...)
def square(X)i-======---uons . e smul
— return mul(x, x) L func square(x)
square(square(3)) t B square
X : square
. ': X |3
. ' Return
. \ value
Every expression is et square
evaluated in the context
of an environment. Ttemmee-e-- »X |9
A name evaluates to the . .
An environment is a sequence of frames.
value bound to that name
in the earliest frame of e The global frame alone
the current environment in

which that name is found. e A local, then the global frame

Example: http://goo.gl/XVtEms

Miscellaneous Python Features

Operators
Multiple Return Values
Docstrings
Doctests
Default Arguments

(Demo)

Conditional Statements

Statements

A statement is executed by the interpreter to perform an action

Compound statements:

[Statement]

The first header determines a
__________________ v statement’s type

) E é The header of a clause
. <statement> o “controls” the suite that

_______________________________ i P follows

<S€para
<statement>

<statement> def statements are compound

statements

Compound Statements

Compound statements:

<header>:

‘<statement> ; .
. <statement> §<[Suite

I B]
'

<statement>
<statement>

A suite is a sequence of
statements

To “execute” a suite means to
execute its sequence of
statements, in order

Execution Rule for a sequence of statements:

e Execute the first statement

e Unless directed otherwise, execute the rest

Conditional Statements

p
1 statement,
3 clauses,

3 headers,

3 suites
&

def

(Demo)

absolute value(x):

min

return -x
elif x ==

return 0
else:

return x

Execution rule for conditional statements:

Each clause is considered in order.

1. Evaluate the header's expression.

2. If it is a true value,

execute the suite & skip the remaining clauses.

Return the absolute value of x.
if x < 0O

moirn

Syntax Tips

1.

Always starts with "if" clause.
Zero or more "elif" clauses.

Zero or one "else" clause,
always at the end.

Boolean Contexts

def absolute value(x):
"""Return the absolute value of x.
if x < 0
return -x
elif x ==
return 0
else:
return x

moirn

George Boole

Boolean Contexts

def absolute value(x):
"""Return the absolute value of x.

return -x

elif (x == 0

return 0

moirn

Two boolean contexts

else:
return x
George Boole
False values in Python: False, @, '', None (more to come)
True values in Python: Anything else (True)

Read Section 1.5.4!

Reading: http://composingprograms.com/pages/15-control.html#conditional-statements

lteration

While Statements

George Boole

(Demo)
i, total = 0, 0 Global frame
while (i < 3: i XX X 3
i=1+1 total X X X 6

total = total + i

Execution rule for while statements:

1. Evaluate the header’s expression.

2. If it is a true value,
execute the (whole) suite,
then return to step 1.

Example: http://goo.gl/@d2cjF

Discussion Question

Complete the following definition by placing an expression in

def choose(total, selection):
"""Return the number of ways to choose SELECTION items from TOTAL.

choose(n, k) is typically defined in math as: n! / (n-k)! / k!

A
;:>cMm&ﬂ5,2) n-(n-1)-(n-2)- ... -(n—k+1)
(k—=1)-(k—=2).- .. .92.
>>> choose (20, 6) (k) (k 2) /?/}
38760
ways = 1

selected = 0
while selected < selection:

selected = selected + 1

ways, total = ways * total // selected , total - 1
return ways

Example: http://goo0.gl/38ch30

