
class Stream:
 """A lazily computed recursive list."""
 class empty:
 def __repr__(self):
 return 'Stream.empty'
 empty = empty()

 def __init__(self, first, compute_rest=lambda: Stream.empty):
 assert callable(compute_rest), 'compute_rest must be callable.'
 self.first = first
 self._compute_rest = compute_rest

 @property
 def rest(self):
 """Return the rest of the stream, computing it if necessary."""
 if self._compute_rest is not None:
 self._rest = self._compute_rest()
 self._compute_rest = None
 return self._rest

CS 61A Final Exam Study Guide – Page 1

Exceptions are raised with a raise statement.
raise <expression>

<expression> must evaluate to a subclass of BaseException or
an instance of one.
Exceptions are constructed like any other object. E.g.,
TypeError('Bad argument!')

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

The <try suite> is executed first.
If, during the course of executing the
<try suite>, an exception is raised
that is not handled otherwise, and
If the class of the exception inherits
from <exception class>, then
The <except suite> is executed, with
<name> bound to the exception.

first rest
Stored

explicitly
Evaluated
lazily

Streams are lazily
computed recursive lists

def integer_stream(first=1):
 def compute_rest():
 return integer_stream(first+1)
 return Stream(first, compute_rest)

def primes(pos_stream):
 def not_divisible(x):
 return x % pos_stream.first != 0
 def compute_rest():
 return primes(filter_stream(not_divisible, pos_stream.rest))
 return Stream(pos_stream.first, compute_rest)

def filter_stream(fn, s):
 if s is Stream.empty:
 return s
 def compute_rest():
 return filter_stream(fn, s.rest)
 if fn(s.first):
 return Stream(s.first, compute_rest)
 else:
 return compute_rest()

def map_stream(fn, s):
 if s is Stream.empty:
 return s
 def compute_rest():
 return map_stream(fn, s.rest)
 return Stream(fn(s.first),
 compute_rest)

A simple fact expression in the Logic language declares a
relation to be true.
Language Syntax:
• A relation is a Scheme list.
• A fact expression is a Scheme list of relations.
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

E

F

A D G

B C H

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))

Relations can contain relations in addition to atoms.

logic> (query (parent abraham ?child))
Success!
child: barack
child: clinton

logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?info))
Success!
info: (color white)

Variables can refer to atoms or relations in queries.

A fact can include multiple relations and variables as well:
(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))
Failure.

A fact is recursive if the same relation is mentioned in a
hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

The Logic interpreter performs a search in the space of
relations for each query to find a satisfying assignment.
(parent delano herbert) ; (1), a simple fact
(ancestor delano herbert) ; (2), from (1) and the 1st ancestor fact
(parent fillmore delano) ; (3), a simple fact
(ancestor fillmore herbert) ; (4), from (2), (3), & the 2nd ancestor fact

Two lists append to form a third list if:
• The first list is empty and the second and third are the same.
• The rest of first and second append to form the rest of third.
logic> (fact (append-to-form () ?x ?x))
logic> (fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

handling a <class 'ZeroDivisionError'>

>>> x

0

class FibIter:
 def __init__(self):
 self._next = 0
 self._addend = 1

 def __next__(self):
 result = self._next
 self._addend, self._next = self._next, self._addend + self._next
 return result

>>> fibs = FibIter()
>>> [next(fibs) for _ in range(10)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

"Please don't reference these directly. They may change."

A stream is a recursive list, but the
rest of the list is computed on demand.
Once created, Streams and Rlists can be
used interchangeably using first and rest.

logic> (query (child ?child fillmore))
Success!
child: abraham
child: delano
child: grover

The basic operation of the
Logic interpreter is to
attempt to unify two
relations.
Unification is finding an
assignment to variables that
makes two relations the same.

((a b) c (a b))
(?x c ?x) True, {x: (a b)}

((a b) c (a b))
((a ?y) ?z (a b)) True, {y: b, z: c}

((a b) c (a b))
(?x ?x ?x) False

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which yields an iterable object.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the first frame of the current
environment.

B. Execute the <suite>.
An iterable object has a method __iter__ that returns an iterator.

>>> counts = [1, 2, 3]
>>> for item in counts:
 print(item)
1
2
3

>>> items = counts.__iter__()
>>> try:
 while True:
 item = items.__next__()
 print(item)
 except StopIteration:
 pass

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).
Lexical scope: The parent of a frame is the environment in
which a procedure was defined. (lambda ...)
Dynamic scope: The parent of a frame is the environment in
which a procedure was called. (mu ...)

> (define f (mu (x) (+ x y)))
> (define g (lambda (x y) (f (+ x x))))
> (g 3 7)
13

class LetterIter:
 def __init__(self, start='a', end='e'):
 self.next_letter = start
 self.end = end

 def __next__(self):
 if self.next_letter >= self.end:
 raise StopIteration
 result = self.next_letter
 self.next_letter = chr(ord(result)+1)
 return result

class Letters:
 def __init__(self, start='a', end='e'):
 self.start = start
 self.end = end

 def __iter__(self):
 return LetterIter(self.start, self.end)

def letters_generator(next_letter, end):
 while next_letter < end:
 yield next_letter
 next_letter = chr(ord(next_letter)+1)

>>> a_to_c = LetterIter('a', 'c')
>>> next(a_to_c)
'a'
>>> next(a_to_c)
'b'
>>> next(a_to_c)
Traceback (most recent call last):
 ...
StopIteration

>>> b_to_k = Letters('b', 'k')
>>> first_iterator =
b_to_k.__iter__()
>>> next(first_iterator)
'b'
>>> next(first_iterator)
'c'
>>> second_iterator = iter(b_to_k)
>>> second_iterator.__next__()
'b'
>>> first_iterator.__next__()
'd'

>>> for letter in
letters_generator('a', 'e'):
... print(letter)
a
b
c
d

• A generator is an iterator backed
by a generator function.

• Each time a generator function is
called, it returns a generator.

Scheme programs consist of expressions, which can be:
• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...
Numbers are self-evaluating; symbols are bound to values.
Call expressions have an operator and 0 or more operands.

A combination that is not a call expression is a special form:
• If expression: (if <predicate> <consequent> <alternative>)
• Binding names: (define <name> <expression>)
• New procedures: (define (<name> <formal parameters>) <body>)

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)
Two equivalent expressions:
 (define (plus4 x) (+ x 4))
 (define plus4 (lambda (x) (+ x 4)))
An operator can be a combination too:
 ((lambda (x y z) (+ x y (square z))) 1 2 3)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
They also used a non-obvious notation for recursive lists.
• A (recursive) Scheme list is a pair in which the second element is

nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has an arbitrary value for the second element of the

last pair. Dotted lists may not be well-formed lists.

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

Symbols normally refer to values; how do we refer to symbols?
 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in
the resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.
 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Symbols are now values

Dots can be used in a quoted list to specify the second
element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)
 > (cdr '((1 2) . (3 4 . (5))))
 (3 4 5)

1 2 3

1 2 3 4 nil

1 2 3 nil

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

A Scheme list is written as elements in parentheses:

(<element0> <element1> ... <elementn>)

Each <element> can be a combination or atom (primitive).
(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))
The task of parsing a language involves coercing a string
representation of an expression to the expression itself.
Parsers must validate that expressions are well-formed.

A recursive
Scheme list

 '(+ 1'
 ' (- 23)'
 ' (* 4 5.6))'

Lines Expression

A Parser takes a sequence of lines and returns an expression.

Lexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time

• Tree-recursive process
• Balances parentheses
• Returns tree structure
• Processes multiple lines

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.
Each call to scheme_read consumes the input tokens for exactly
one expression.
Base case: symbols and numbers
Recursive call: scheme_read sub-expressions and combine them

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for name
lookup

The structure
of the Scheme
interpreter

To apply a user-defined procedure, create a new frame in which
formal parameters are bound to argument values, whose parent
is the env of the procedure, then evaluate the body of the
procedure in the environment that starts with this new frame.

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

CS 61A Final Exam Study Guide – Page 2

A procedure call that has not yet returned is active. Some
procedure calls are tail calls. A Scheme interpreter should
support an unbounded number of active tail calls.
A tail call is a call expression in a tail context, which are:
• The last body expression in a lambda expression
• Expressions 2 & 3 (consequent & alternative) in a tail context

if expression
(define (factorial n k)
 (if (= n 0) k
 (factorial (- n 1)
 (* k n))))

(define (length s)
 (if (null? s) 0
 (+ 1 (length (cdr s)))))

(define (length-tail s)
 (define (length-iter s n)
 (if (null? s) n
 (length-iter (cdr s) (+ 1 n))))
 (length-iter s 0))

Recursive call is a tail call

Not a tail call

Creates a new
environment each

time a user-
defined procedure

is applied

A basic interpreter has two parts: a parser and an evaluator.

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
>>> len(s)
3
>>> print(Pair(1, 2))
(1 . 2)
>>> print(Pair(1, Pair(2, 3)))
(1 2 . 3)

class Pair:
 """A Pair has first and second attributes.

 For a Pair to be a well-formed list,
 second is either a well-formed list or nil.
 """
 def __init__(self, first, second):
 self.first = first
 self.second = second

(* 3
 (+ 4 5)
 (* 6 7 8))

Calculator Expression

*

3 +

4 5

*

6 87

Expression Tree

secondfirst
*

secondfirst
3

secondfirst secondfirst
nil

secondfirst
+

secondfirst
4

secondfirst
5 nil

secondfirst
*

secondfirst
6

secondfirst
7

secondfirst
8 nil

Representation as Pairs

The Calculator language
has primitive expressions
and call expressions

