
CS 61A Structure and Interpretation of Computer Programs
Summer 2013 Final Solutions

INSTRUCTIONS

� You have 3 hours to complete the exam.

� The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official 61A study guides attached to the back of this exam.

� Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

2

1. (5 points) Orange you glad it’s not “What Will Python Print”?

(a) (3 pt) Assume the following definitions have been made:

def foo(num):

return x + num

def bar(x):

return foo(x + 3)

def banana(x):

def orange(num):

return num + x * 3

return orange

def apple(x):

return banana(x - 2)(4)

Write what each of the function calls below would return in lexical and dynamic scope. If a function call
would result in an error, write Error instead.

>>> bar(3)

� Lexical scope: Error

� Dynamic scope: 9

>>> apple(7)

� Lexical scope: 19

� Dynamic scope: 25

(b) (2 pt) Alan Kay drew parallels to common user interface design principles from which of the following
sports? Write an X on the line next to your answer.

Basketball

Bowling

Football

Golf

Soccer

X Tennis

Volleyball

Login: 3

2. (4 points) Abstract away your worries

Assume we are provided the following implementation of the rlist abstract data type:

empty_rlist = None

def rlist(first, rest):

return (first, rest)

def first(s):

return s[0]

def rest(s):

return s[1]

In the following functions, clearly circle any data abstraction violations. Draw one circle for each data abstrac-
tion violation.

def interleave(s1, s2):

if not s1 :

return s2

elif not s2 :

return s1

recursive = interleave(s1[1] , s2[1])

return rlist(first(s1), (first(s2), recursive))

def filter(pred, s):

if not s :

return None

elif pred(first(s)):

return (first(s), filter(pred, s[1]))

return filter(pred, s[1])

4

3. (12 points) Lambdas and llamas

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

� Add all missing names, labels, and parent annotations to all local frames.

� Add all missing values created during execution.

� Show the return value for each local frame.

Global&frame&

func&in_the(sun)&
def&in_the(sun):&
&&&&def&sun(fun):&
&&&&&&&&def&beach(water):&
&&&&&&&&&&&&nonlocal&sun&
&&&&&&&&&&&&if&water&==&0:&
&&&&&&&&&&&&&&&&return&fun&
&&&&&&&&&&&&sun&=&beach&
&&&&&&&&&&&&return&sun(water&:&1)&
&&&&&&&&return&beach&
&&&&return&sun&
&
boat&=&[in_the]&
boat.append(boat)&
summer&=&boat[0](boat)&
summer(2)(1)&

Return&Value&

Return&Value&

Return&Value&

Return&Value&

in_the&

http://goo.gl/Oe58E5

Login: 5

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

� Add all missing names, labels, and parent annotations to all local frames.

� Add all missing values created during execution.

� Show the return value for each local frame.

Global&frame&

func&uni(llama)&

def&uni(llama):&
&&&&x&=&10&
&&&&def&volde(uni,&x):&
&&&&&&&&return&uni&>&llama(11,&7)&
&&&&return&volde&
&
x&=&5&
def&volde(uni,&x):&
&&&&if&uni(6,&x):&
&&&&&&&&return&"pi"&
&&&&return&"i"&
&
llama&=&uni(lambda&llama,&uni:&llama&+&uni&+&x)&
volde(llama,&20)&

&
 & Return&Value&

Return&Value&

Return&Value&

Return&Value&

uni&

x& 5&

func&volde(uni,&x)&
volde&

&
 &

http://goo.gl/Cfo9qP

6

4. (4 points) Cupcakes cupcakes cupcakes cupcakes cupcakes

Recall the type_tag function discussed in lecture:

def type_tag(generic_object):

return type_tag.tags[type(generic_object)]

We will use this function to create a generic function. Because everyone likes pastries, you have created five
different classes to represent five different kinds of pastries:

� SugarCookie

� SnickerdoodleCookie

� RedVelvetCookie

� VanillaCake

� CheeseCake

You have two functions, eat_cookie and eat_cake, which you call on the appropriate pastry to consume it.
However, each function only works on pastries of a particular type – eat_cookie only works on cookies, and
eat_cake only works on cake. Tired of having to manually select the correct function, you attempt to define
a generic eat function:

def eat(baked_good):

return eat.implementations[type_tag(baked_good)](baked_good)

This function takes a baked good and calls the appropriate eat function on it, regardless of its type. However,
in your haste to consume delicious baked goods, you forgot to fill in the appropriate dictionaries to make this
work! Complete the following two dictionaries so that the eat function works as expected. Use as few tags
as possible.

type_tag.tags = {

SugarCookie : 'cookie',

SnickerdoodleCookie: 'cookie',

RedVelvetCookie : 'cookie',

VanillaCake : 'cake',

CheeseCake : 'cake'

}

eat.implementations = {

'cake' : eat_cake,

'cookie' : eat_cookie

}

Login: 7

5. (10 points) Interpretive dance

(a) (4 pt) Assume the following definition has been loaded into the Scheme interpreter from Project 4:

(define (sum-of-squares x y z)

(+ (* x x) (* y y) (* z z)))

Given the following Scheme expressions, circle the correct number of calls to scheme_eval and scheme_apply:

(+ 5 (* 3 7 3))

scheme_eval 3 4 5 6 7 8 9

scheme_apply 1 2 3 4 5 6

(sum-of-squares 3 4 5)

scheme_eval 4 5 8 10 14 19 24 25

scheme_apply 1 2 3 4 5 6

(b) (6 pt) For each of the following Scheme expressions, place an X on the line next to the correct Pair

representation that scheme_read from Project 4 would create.

(func (4 5) 3)

Pair('func', Pair(4, Pair(5, Pair(3))))

Pair('func', Pair(4, Pair(5, Pair(3, nil))))

Pair('func', Pair(Pair(4, 5), Pair(3, nil)))

X Pair('func', Pair(Pair(4, Pair(5, nil)), Pair(3, nil)))

Attempting to scheme_read the above expression would result in a syntax error.

'(1 2 (3))

Pair(1, Pair(2, Pair(3, nil)))

Pair(1, Pair(2, Pair(Pair(3, nil), nil)))

Pair('quote', Pair(1, Pair(2, Pair(Pair(3, nil), nil))))

X Pair('quote', Pair(Pair(1, Pair(2, Pair(Pair(3, nil), nil))), nil))

Attempting to scheme_read the above expression would result in a syntax error.

(cdr () 'cdr)

Pair('cdr', Pair(nil, Pair('cdr', nil)))

Pair('cdr', Pair(Pair(nil, Pair('cdr', nil))))

X Pair('cdr', Pair(nil, Pair(Pair('quote', Pair('cdr', nil)), nil)))

Pair('cdr', Pair(Pair(nil, Pair(Pair('quote', Pair('cdr', nil))))))

Attempting to scheme_read the above expression would result in a syntax error.

8

6. (9 points) You Oughta Like Objects

(a) (6 pt) Assume the definitions on the left have been loaded into the Python interpreter. In each of the
blanks on the right, write what would be displayed by the Python interpreter, or write Error if that line
would cause an error.

class A(object):

def f(self):

return 2

def g(self, obj, x):

if x == 0:

return A.f(obj)

return obj.f() + self.g(self, x - 1)

class B(A):

def f(self):

return 4

>>> x = A()

>>> y = B()

>>> x.f()

2

>>> B.f()

Error

>>> x.g(x, 1)

4

>>> y.g(x, 2)

8

>>> x.f = lambda self: 4

>>> y.g(x, 1)

Error

(b) (3 pt) Consider the following interpreter session:

>>> x = Yolo(1)

>>> x.g(3)

4

>>> x.g(5)

6

>>> x.motto = 5

>>> x.g(5)

10

Provide the definition of the Yolo class so that the above interpreter session works as expected.

class Yolo(object):

"*** YOUR CODE HERE ***"

def __init__(self, motto):

self.motto = motto

def g(self, n):

return self.motto + n

Login: 9

7. (7 points) Let’s get #basedmark trending on Twitter

(a) (3 pt) The following two statements are executed in parallel in a shared environment in which x is initially
bound to 2:

Thread 1 Thread 2

>>> x = x + 4 + x >>> x = x * 3

In the box below, list all possible values of x after both threads terminate.

6, 8, 12, 16, 24

Now, in the box below, list only the values that are possible when the threads are correctly synchronized.

16, 24

(b) (4 pt) Fill in the blanks to complete the output of this MapReduce job. This job is run on the key-value
pairs contained within the DATA list, and its behavior depends on the value of the KEYWORD variable:

DATA = [

('8/11/13', "Studying for finals! Mark is so helpful. #basedmark"),

('8/12/13', "Mappers and reducers? Whaaat...? #basedmark"),

('8/12/13', "OMG WHAT ARE LOGIC?!"),

('8/12/13', "Eric and Steven aren't cool"),

('8/12/13', "Logic is so cool! :) #hw13yo #logic #clubsoda"),

('8/14/13', "OMG WHAT IS MAPREDUCE?!"),

('8/15/13', "Just kidding, MAPREDUCE IS SO COOL! #basedmark"),

('8/15/13', "Just kidding, the final was cool too. #coolcoolcool")

]

def map():

for date, status in DATA:

for word in [w.lower() for w in status.split() if KEYWORD in w]:

emit(date, 1)

def reduce():

for date, count_iterator in values_by_key(sys.stdin):

emit(date, sum(count_iterator))

For each of the values of KEYWORD below, fill in the resulting output in the provided tables:

KEYWORD = '#basedmark'

Date Count

8/11/13 1

8/12/13 1

8/15/13 1

KEYWORD = 'cool'

Date Count

8/12/13 2

8/15/13
2 (3 was also ac-
cepted)

10

8. (7 points) Don’t let this question get the BST of you

Consider the following binary tree abstract data type, implemented in Scheme:

(define (tree entry left right)

(cons entry (cons left right)))

(define (entry tree)

(car tree))

(define (left tree)

(car (cdr tree)))

(define (right tree)

(cdr (cdr tree)))

Recall that a binary search tree is a tree in which all entries are greater than the elements in their left branches
and less than the elements in their right branches. Use this abstract data type to define a tail-recursive
procedure bst-path. This procedure takes a binary search tree, as well as an item contained in the binary
search tree. It returns a list of the values encountered along the path from the root to the node containing that
item. For example, assume we have defined the following binary search trees in the Scheme interpreter:

2	

t:	
 s:	
 4	

7	

3	
 5	

6	

4	

6	

8	

7	

Then bst-path would work as follows:

STk> (bst-path t 2)

(4 2)

STk> (bst-path t 6)

(4 7 5 6)

STk> (bst-path s 6)

(6)

STk> (bst-path s 4)

(6 4)

You may assume that the item is always in the tree, and the tree does not contain duplicate elements. Complete
the definition of bst-path on the next page.

Login: 11

Make sure your procedure is tail-recursive! A solution that is not tail-recursive is limited to 5 points possible.

(define (bst-path bst item)

(define (bst-helper tree item acc)

(cond ((= (entry tree) item) (append acc (list item)))

((> (entry tree) item)

(bst-helper (left tree) item (append acc (list (entry tree)))))

(else (bst-helper (right tree) item (append acc (list (entry tree)))))))

(bst-helper bst item nil))

9. (9 points) In space, no one can hear you stream

(a) (4 pt) Consider the following definitions:

def make_integer_stream(first=1):

def compute_rest():

return make_integer_stream(first + 1)

return Stream(first, compute_rest)

def add_stream(s1, s2):

def compute_rest():

return add_stream(s1.rest, s2.rest)

return Stream(s1.first + s2.first, compute_rest)

def my_stream():

def rest():

return add_stream(make_integer_stream(0),

add_stream(my_stream(), my_stream()))

return Stream(-1, rest)

In the blanks below, write the first five elements of the stream returned by a call to my_stream:

-1 -2 -3 -4 -5

12

(b) (5 pt) Write a function group_iterator that takes another iterator of key-value tuples as its argument.
It should return a new iterator that yields key-value tuples: one tuple per unique key in the original
iterator. The value for each tuple should be a list containing all values corresponding to that key in the
original iterator.

You may assume that the original iterator has been sorted such that all pairs with the same key are next
to each other. You may not assume anything about the length of the provided iterator.

def group_iterator(orig):

"""Groups elements from the provided iterator by keys.

>>> x = [('steven', 1), ('steven', 2), ('eric', 3), ('eric', 5), ('eric', 4)]

>>> grouped = group_iterator(iter(x))

>>> next(grouped)

('steven', [1, 2])

>>> next(grouped)

('eric', [3, 5, 4])

>>> next(grouped)

Traceback

...

StopIteration

"""

key, val = next(orig)

so_far = [val]

for k, v in orig:

if k == key:

so_far.append(v)

else:

yield key, so_far

key, so_far = k, [v]

yield key, so_far

Login: 13

10. (8 points) Flat 10

Write a set of facts for the flatten relationship between two relations. The only atom present in either of
these relations is the letter a. The flatten relationship is satisfied when its second relation is the flattened
version of the first:

logic> (query (flatten (a a a) (a a a)))

Success!

logic> (query (flatten ((a (a)) a) ?what))

Success!

what: (a a a)

logic> (query (flatten (((a)) (a a)) ((a) a a)))

Failed.

You may assume that each relation’s elements are either other relations, or the letter a. You can assume none
of the nested relations are empty. You may find append useful in solving this problem.

(fact (append () ?x ?x))

(fact (append (?a . ?r) ?b (?a . ?z))

(append ?r ?b ?z))

"*** YOUR CODE HERE ***"

(fact (flatten () ()))

(fact (flatten ((?a . ?b) . ?cdr1) ?s)

(flatten (?a . ?b) ?flattened)

(append ?flattened ?cdr2 ?s)

(flatten ?cdr1 ?cdr2))

(fact (flatten (a . ?cdr1) (a . ?cdr2))

(flatten ?cdr1 ?cdr2))

14

11. (5 points) The exciting life of Albert Wu

Albert worries that students find calling functions to be too boring. To make things more interesting, he decides
to write a higher order function liven that converts boring functions into more exciting functions.

Help him complete his definition of liven. It should take three arguments:

1. boring_fn, a function that takes one argument.

2. fun_fn, a function that takes two arguments, the second of which is always an integer.

3. An integer n.

Once called with these three arguments, liven should return a lively function, which takes one argument and
does the following:

� Every n-th time the lively function is called, it calls fun_fn with the provided argument and the number
of times the lively function has ever been called. It returns the result of this call.

� Otherwise, calling the lively function should return the value of calling boring_fn with the provided
argument.

Complete the definition of liven in the provided space below.

def liven(boring_fn, fun_fn, n):

"""Returns a lively function based on two provided functions and an integer.

>>> great_deal = liven(lambda name: name + ' walked the dog.',

... lambda name, i: name + ' won ' + str(i) + ' new cars!',

... 2)

...

>>> great_deal('Sandy')

'Sandy walked the dog.'

>>> great_deal('Sandy')

'Sandy won 2 new cars!'

>>> great_deal('Sandy')

'Sandy walked the dog.'

>>> great_deal('Sandy')

'Sandy won 4 new cars!'

"""

count = 0

def lively(arg):

nonlocal count

count += 1

if count % n == 0:

return fun_fn(arg, count)

return boring_fn(arg)

return lively

Login: 15

12. (1 points) Extra credit

The 61A staff members have used this test to encode a message for you:

2[3] 11[1] 1[2] 5[1] 4[5] 3[6] 10[0] 8[1] 2[4] 10[2]

1[4] 5[4] 7[1] 4[4] 7[2] 2[2] 6[2] 9[-1] 3[2] 11[2] 1[1]

Write the decoded message in the box below to receive a point of extra credit:

