
CS 61A Structure and Interpretation of Computer Programs
Fall 2013 Midterm 2 Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the two official 61A midterm study guides attached to the back of this
exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/14 /14 /12 /10 /50

2

1. (14 points) Classy Costumes

For each of the following expressions, write the value to which it evaluates. The first two rows have been provided
as examples. If evaluation causes an error, write Error. If evaluation never completes, write Forever.

Assume that you have started Python 3 and executed the following statements:

class Monster:

vampire = {2: ’scary’}

def werewolf(self):

return self.vampire [2]

class Blob(Monster):

vampire = {2: ’night’}

def __init__(self , ghoul):

vampire = {2: ’frankenstein ’}

self.witch = ghoul.vampire

self.witch [3] = self

spooky = Blob(Monster)

spooky.werewolf = lambda self: Monster.vampire [2]

Expression Evaluates to
square(5) 25
1/0 Error

[k+2 for k in range(4)]

[2, 3, 4, 5]

Monster.vampire[2][3]

’r’

repr(len(spooky.witch))

’2’

spooky.witch[3] is not spooky

False

spooky.witch[2][0:4]

’scar’

spooky.werewolf()

Error

Monster.werewolf(spooky)

’night’

Login: 3

2. (14 points) Wreaking Ball

(a) (8 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

miley func miley(ray)

Return Value

Return Value

Return Value

Return Value

def miley(ray):
 def cy():
 def rus(billy):
 nonlocal cy
 cy = lambda: billy + ray
 return (1, billy)
 if len(rus(2)) == 1:
 return (3, 4)
 else:
 return (cy(), 5)
 return cy()[1]
billy = 6
miley(7)

ray

f1: miley

cy

f2: cy [parent=f1]

rus

f3: rus [parent=f2]

billy 2

7

 λ [parent=f3]

func λ() [parent=f3]

func rus(billy) [parent=f2]

tuple
10

1 2

9

tuple
10

9 5

5

billy 6

4

(b) (6 pt) Write the letter of the environment diagram that would result from executing each code snippet
below, just after starting Python. The first blank is filled for you. Two different snippets may result in the
same environment diagram. If none of the environment diagrams are correct, write N.

A

A

B

C

D

F

N: None of the above

Global frame

s

t

list
10

1
list

10

2

1 2

Global frame

s

t

Global frame

s

t

list
0

list
10

1

list
0

list
0

list
10

1

list
0

list
0

Global frame

s

t

list
0

list
10

1

list
0

Global frame

s

t

list
0

list
10

1 2
list
0

list
0

E
Global frame

s

t

list
0

list
10

1 2
list
0

F C D

Login: 5

3. (12 points) Mutants

(a) (4 pt) Given two Rlist arguments a and b, the function merge(a, b) changes a so that it also includes
all elements of b at the end, but does not change b. After merging, changes to b should not affect a.
Assume that a is not empty, but b may be empty. Complete the implementation by filling the blanks with
expressions. The Rlist class is defined in your study guide.

def merge(a, b):

""" Add the elements of b to the end of a, mutating a but not b.

>>> a = Rlist(1, Rlist(2, Rlist (3)))

>>> b = Rlist(4, Rlist(5, Rlist (6)))

>>> merge(a, b)

>>> a # a should be modified

Rlist(1, Rlist(2, Rlist(3, Rlist(4, Rlist(5, Rlist (6))))))

>>> b # b should not be modified

Rlist(4, Rlist(5, Rlist (6)))

>>> b.first = 7 # modify the elements of b

>>> b # b should be modified

Rlist(7, Rlist(5, Rlist (6)))

>>> a # a should not be modified

Rlist(1, Rlist(2, Rlist(3, Rlist(4, Rlist(5, Rlist (6))))))

"""

assert a is not Rlist.empty

if b is Rlist.empty:

return # No entries to add to a.

elif a.rest is Rlist.empty:

a.rest = Rlist(b.first)

merge(a.rest , b.rest)

else:

merge(a.rest , b)

(b) (2 pt) Define a mathematical function f(m,n) such that evaluating a correct and efficient implementation
of merge(a, b) on Rlist a of length m and Rlist b of length n requires Θ(f(m,n)) function calls.

f(m,n) = m + n

6
(c) (6 pt) The function fold_tree takes in a three-argument function, a zero value, and a Tree. It returns

the value of replacing Tree with the function and empty branches with the zero value. For each of size,
reverse, and repeated, complete the inner function f. Each f cannot be recursive.

def fold_tree(fn , zero , tree):

""" Replaces the tree constructor with a 3-argument function.

>>> t = Tree(3, Tree(5, None , Tree (3)), Tree (2))

>>> f = lambda a, b, c: a + b + c

>>> fold_tree(f, 0, t) # is equivalent to the expression ...

13

>>> f(3, f(5, 0, f(3, 0, 0)), f(2, 0, 0))

13

"""

if tree is None:

return zero

return fn(tree.entry , fold_tree(fn , zero , tree.left),

fold_tree(fn , zero , tree.right))

def size(tree):

""" Return the number of trees contained in tree.

>>> size(Tree(3, Tree(5, None , Tree (3)), Tree (2)))

4

"""

def f(entry , left , right):

return 1 + left + right

return fold_tree(f, 0, tree)

def reverse(tree):

""" Return a new tree swapping all left and right branches of tree.

>>> reverse(Tree(3, Tree(5, None , Tree (3)), Tree (2)))

Tree(3, Tree(2), Tree(5, Tree(3), None))

"""

def f(entry , left , right):

return Tree(entry , right , left)

return fold_tree(f , None , tree)

def repeated(tree):

""" Return how many times the root entry of tree appears in tree.

>>> repeated(Tree(3, Tree(5, None , Tree (3)), Tree (2))) # 3 appears twice.

2

"""

def f(entry , left , right):

return left + right + (1 if tree.entry == entry else 0)

return fold_tree(f, 0, tree)

Login: 7

4. (10 points) Expansion Mansion

For a fraction n/d with n < d, its decimal expansion is written as a series of digits following a decimal point.

For example, 5/8 expands to 0.625. We can compute this result recursively. The numerator 5 times 10 is 50. 50
divided by 8 is 6 with remainder 2. 20 divided by 8 is 2 with remainder 4. 40 divided by 8 is 5 with remainder
0. The quotients in bold are the digits of the expansion. Each subsequent digit is the quotient of dividing 10
times the remainder of the previous digit by the denominator of the fraction.

(a) (4 pt) Assume that the decimal expansion of n/d is finite, n is positive, and n < d. The function
expand_finite returns the digits of the decimal expasion as an Rlist. Complete it by filling in each
blank with an expression. The Rlist class is defined in your study guide.

def expand_finite(n, d):

""" Return the finite decimal expansion of n/d as an Rlist. Assume n<d.

>>> expand_finite (1, 2) # 1/2 = 0.5

Rlist (5)

>>> expand_finite (5, 8) # 5/8 = 0.625

Rlist(6, Rlist(2, Rlist (5)))

>>> expand_finite (3, 40) # 3/40 = 0.075

Rlist(0, Rlist(7, Rlist (5)))

"""

dividend = n * 10

quotient , remainder = dividend // d, dividend % d

if remainder == 0:

return Rlist(quotient)

else:

return Rlist(quotient , expand_finite(remainder , d))

(b) (2 pt) The function coerce_to_float returns the float equal to an input Rlist representing the series
of digits following the decimal point in a finite decimal expansion. Complete its implementation below.

def coerce_to_float(s):

""" Return a float equal to an Rlist encoding a series of digits.

>>> coerce_to_float(expand_finite (1, 2))

0.5

>>> coerce_to_float(expand_finite (3, 40))

0.075

"""

if s is Rlist.empty:

return 0

else:

return (s.first + coerce_to_float(s.rest)) / 10

8

Repeating Decimal Expansions. The decimal expansion of a rational number may be infinite, but
can always be described by a finite (and possibly repeating) series of digits. We can represent a series of
digits as a recursive list, which may contain itself.

(c) (4 pt) Assume that n is positive and n < d. The expand function returns representations of both finite
and infinite decimal expansions. Complete it by filling in each blank with an expression or assignment
statement.

def expand(n, d):

""" Return the decimal expansion of n/d as an Rlist. Assume n < d.

>>> expand(1, 2) # 1/2 = 0.5

Rlist (5)

>>> expand(5, 8) # 5/8 = 0.625

Rlist(6, Rlist(2, Rlist (5)))

>>> third = expand(1, 3) # 1/3 = 0.333333...

>>> [third[i] for i in range (10)]

[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

>>> third.rest is third # There is only one unique digit in 1/3

True

>>> fourteenth = expand(1, 14) # 1/14 = 0.0714285714285...

>>> [fourteenth[i] for i in range (10)]

[0, 7, 1, 4, 2, 8, 5, 7, 1, 4]

"""

return expand_using(n, d, {})

def expand_using(n, d, known):

""" Return the decimal expansion of n/d as an Rlist.

known -- a dictionary from integer k to the decimal expansion of k/d.

"""

if n in known:

return known[n]

else:

dividend = n * 10

quotient , remainder = dividend // d, dividend % d

digits = Rlist(quotient)

known[n] = digits

if remainder > 0:

digits.rest = expand_using(remainder , d, known)

return digits

