
CS 61A Structure and Interpretation of Computer Programs
Fall 2013 Final Solutions

INSTRUCTIONS

• You have 3 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the three official 61A study guides attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

• Fill in the information on this page using PERMANENT INK. You may use pencil for the rest of the exam.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/24 /10 /20 /26 /80

2

THIS PAGE INTENTIONALLY LEFT BLANK

Login: 3

1. (24 points) What a Value!

(a) (10 pt) For each of the following Python expressions, write the value to which it evaluates, assuming that
expressions are evaluated in order in a single interactive session. Answers may depend on previous
lines; be careful to keep track of bindings from names to values! The first two rows have been
provided as examples. If evaluation causes an error, write Error. If evaluation never completes, write
Forever. If the value is a function, write Function.

Assume that you have started Python 3 and executed the following statements:

def outer(f):

x = 0

def inner(g):

nonlocal x

x, y = g(x), f(x)

return f(x, y)

return inner

def add(a, b=2):

return a+b

def grow(c):

return sum(range(c, c+2))

h1, h2 = outer(add), outer(add)

Expression Evaluates to
5*5 25
1/0 Error

grow(5)

11

list(map(str, map(grow, range(3, add(3)))))

[’7’, ’9’]

h1(grow)

3

outer(grow)(add)

Error

h1(grow) + h2(add) + h2(grow)

19

4

(b) (8 pt) Each of the following expressions evaluates to a Stream instance. For each one, write the values
of the three elements in the stream. The first value of the first stream is filled in for you.

Assume that you have started Python 3 and executed the following statements, in addition to the Stream

class statement on your final study guide.

def m(t):

def compute_rest ():

return m(t.rest.rest)

return Stream(t.rest.first+1, compute_rest)

s = lambda t: Stream(t, lambda: s(t+2))

t = s(1)

u = m(t)

Stream Has the first three elements

t 1, 3 , 5

u 4 , 8 , 12

m(u) 9 , 17 , 25

(c) (6 pt) For each of the following Scheme expressions, write the Scheme value to which it evaluates. The
first three rows are completed for you. If evaluation causes an error, write Error. If evaluation never
completes, write Forever. Hint: No dot should appear in a well-formed list.

Assume that you have started the Project 4 Scheme interpreter and evaluated the following definitions.

(define f (lambda (x y) (g (cons x y))))

(define g (mu (z) (list (h x) y z)))

(define h (mu (y) (if (> y 0)

(+ x (h (- y 1)))

1)))

Expression Evaluates to
(* 5 5) 25
’(1 2 3) (1 2 3)
(/ 1 0) Error

’((1 . (2 3 . (4))) . 5)
((1 2 3 4) . 5)

(cons 1 (list 2 3 ’(car (4 5))))
(1 2 3 (car (4 5)))

(f 2 3)
(5 3 (2 . 3))

Login: 5

2. (10 points) Good Game

(a) (8 pt) In the box below, write the final value to which each numbered blank would have an arrow in the
environment diagram. Blank 0 is completed for you. In addition, fill in the parent annotations for all
functions and frames that have non-global parents.

You may wish to fill in the diagram, but only the numbered values and parent annotations will be scored.

Hint: The pop method removes and returns the last element of a list.

Note: There is another question at the bottom of this page.

Global frame

g func g(g) ________________

Return Value

Return Value

Return Value

s

c

func s(g) ________________

func h(s) ________________

f1: g _________________

g

f2: s _________________

f3: h _________________

h

g

s

1

2

4

3

5

Write each value as it
would be displayed by
the Python interpreter

1. _______________1

2. _______________2

3. _______________3

4. _______________4

5. _______________5

h 0

1. _______________0 [1, 2, [3, 4]]

[1, 3]

[6, 1]

[8, 7, 6]

[7, 6]

[[6], [1, 3]]

def g(g):
 def h(s):
 nonlocal g
 g = [s.pop(), g[0]]
 s = s[1:]
 return [s[1:], g]
 return h
def s(g):
 return [8, 7] + g
c = g([3, 4, 5])
h = [1, 2, [3, 4]]
c(s([6, 1])) # A

parent=f1

parent=f1

(b) (2 pt) What value would result from evaluating c(s([6, 1])) another time after executing the code above?
If evaluation causes an error, write Error. If evaluation never completes, write Forever.

[[6], [1, 1]]

6

3. (20 points) Equality

(a) (4 pt) Fill in the blanks in the implementation of paths, which takes as input two positive integers x

and y. It returns the number of ways of reaching y from x by repeatedly incrementing or doubling. For
instance, we can reach 9 from 3 by incrementing to 4, doubling to 8, then incrementing again to 9.

def inc(x):

return x+1

def double(x):

return x*2

def paths(x, y):

""" Return the number of ways to reach y from x by repeated

incrementing or doubling.

>>> paths(3, 5) # inc(inc (3))

1

>>> paths(3, 6) # double (3), inc(inc(inc (3)))

2

>>> paths(3, 9) # E.g., inc(double(inc (3)))

3

>>> paths(3, 12) # E.g., double(double (3))

6

>>> paths(3, 16) # E.g., double(double(inc (3)))

11

>>> paths(1, 8) # E.g., double(inc(inc(double (1))))

10

>>> paths(3, 3) # No calls is a valid path

1

"""

if x > y:

return 0

elif x == y:

return 1

else:

return paths(inc(x), y) + paths(double(x), y)

(b) (2 pt) Write one of <=, >=, or != in each blank below such that the following statements are true for all
positive integers x, y, and z. If it is not possible to do so, write X in the blank.

paths(min(x, y), z) >= paths(max(x, y), z)

paths(x, z) >= paths(x, y) * paths(y, z)

Login: 7

(c) (4 pt) Fill in the blanks in the implementation of pathfinder, a higher-order function that takes an
increasing function f and a positive integer y. It returns a function that takes a positive integer x and
returns whether it is possible to reach y by applying f to x zero or more times. For example, 8 can be
reached from 2 by applying double twice. A function f is increasing if f(x)>x for all positive integers x.

def pathfinder(f, y):

""" Return a function find_from that takes x and returns whether repeatedly

applying the increasing function f to x can reach y.

>>> f = pathfinder(double , 8)

>>> {k: f(k) for k in (1, 2, 3, 4, 5)}

{1: True , 2: True , 3: False , 4: True , 5: False}

>>> g = pathfinder(inc , 3)

>>> {k: g(k) for k in (1, 2, 3, 4, 5)}

{1: True , 2: True , 3: True , 4: False , 5: False}

"""

def find_from(x):

while x < y:

x = f(x)

return x == y

return find_from

(d) (4 pt) A shifted-k point of a differentiable function f is a number x such that f(x) − k = f(x − k) for
constant k. Fill in the blanks in the implementation of shifted, which takes a differentiable function f,
its derivative df, and a constant k. It returns a shifted-k point of f using the find_zero function defined
on your study guide. Hint: The derivative of f(x) − k is the same as the derivative of f(x).

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

1

2

3

4

square(x)-2

square(x-2)

def shifted(f, df , k):

""" Return a shifted -k point of the function f with derivative df.

>>> square , dsquare = lambda x: x*x, lambda x: 2*x

>>> shifted(square , dsquare , 2)

1.5

>>> shifted(square , dsquare , 6)

3.5

"""

def g(x):

return f(x) - k - f(x-k)

def dg(x):

return df(x) - df(x-k)

return find_zero(g, dg)

8

(e) (6 pt) Fill in the blanks in the implementation of zero, which returns whether it is possible to create a
Calculator expression that evaluates to 0 using the input numbers as leaves of the expression tree. The
only Calculator operations allowed are two-argument +, such as in (+ 1 2); two-argument -, such as in
(- 2 1); and two-argument *, such as in (* 2 2).

from operator import add , sub , mul

def zero(*s):

""" Return whether s can be the ordered leaves of a Calculator expression

that evaluates to 0. The argument s is a tuple of positive integers.

Values can only be combined with two -argument +, -, and *.

No division or single -argument negation is allowed.

>>> zero(1, 1, 2) # (- (+ 1 1) 2)

True

>>> zero(1, 1, 3) # (* (- 1 1) 3)

True

>>> zero(12, 4, 3) # (- 12 (* 4 3))

True

>>> zero(9, 6, 3, 5) # (- (+ 9 6) (* 3 5))

True

>>> zero(1, 3, 2, 5) # (- (+ (* 1 3) 2) 5)

True

>>> zero(5, 3)

False

>>> zero(7, 5, 3)

False

>>> zero(8, 4, 2) # (- 8 (* 4 2))

True

>>> zero(4, 8, 2) # Order matters.

False

"""

if len(s) == 1:

return s[0] == 0

for i in range(len(s)-1):

for f in (add , sub , mul):

a = f(s[i], s[i+1])

if zero (*(s[:i] + (a,) + s[i+2:])):

return True

return False

Login: 9

4. (26 points) Python Crossing

(a) (8 pt) The alphabetical function takes as input an iterable over lowercase letters, such as a string. It
returns whether those letters are in alphabetical order. Cross out whole lines so that alphabetical is
implemented correctly with the fewest lines of code possible. Hint: ’e’<’f’ evaluates to True.

def alphabetical(w):

""" Return whether the letters in w are in alphabetical order.

>>> alphabetical(’’)

True

>>> alphabetical(’why ’)

False

>>> alphabetical(’how ’)

True

>>> alphabetical(’above ’)

False

>>> alphabetical(’below ’)

True

>>> alphabetical(’full ’)

False

>>> alphabetical(’empty ’)

True

>>> alphabetical(’matte ’)

False

>>> alphabetical(’glossy ’)

True

"""

previous = ’a’

previous = w[0]

previous = None

i = 0

next = lambda x: x[i]

w = iter(w)

try:

while True:

while i < len(w):

nonlocal i

nonlocal previous

nonlocal w

w = iter(w)

letter = next(w)

letter = previous

if letter < previous:

if letter <= previous:

return False

return True

return letter < previous

previous = letter

previous = w[i-1]

previous = next(w)

except StopIteration:

return False

return True

return w.sort() is w

10

Below is a complete Rlist class that is identical to the one from lecture, but without any assert statements.

class Rlist:

class EmptyList:

def __len__(self):

return 0

empty = EmptyList ()

def __init__(self , first , rest=empty):

self.first = first

self.rest = rest

def __getitem__(self , index):

if index == 0:

return self.first

else:

return self.rest[index -1]

def __len__(self):

return 1 + len(self.rest)

(b) (6 pt) The Alist class, which subclasses Rlist above, represents a recursive list, but instead of storing
the first element and the rest, it stores a recursive list of elements at the beginning of the list, then a
recursive list of elements at the end. The first and rest of an Alist instance can each be either an Alist

instance or an Rlist instance. Cross out whole lines so that Alist is implemented correctly with the
fewest lines of code possible.

class Alist(Rlist):

"""An appended list consists of a first list followed by the rest.

>>> s = Rlist(1, Rlist(2, Rlist (3)))

>>> t = Rlist(4, Rlist(5, Rlist (6)))

>>> st = Alist(s, t)

>>> len(st), st[1], st[4]

(6, 2, 5)

>>> stst = Alist(st , st)

>>> len(stst), stst [8]

(12, 3)

"""

def __init__(self , prefix , rest):

Rlist.__init__(self , prefix , rest)

Rlist.__init__(self , prefix.first , rest)

def __getitem__(self , index):

if index == 0:

if index < len(self.first):

return self.first

return self.first[index]

else:

r = self.rest

return r[index -len(self.first)]

return rest[index -len(self.first)]

return r[index -1]

return rest[index -1]

def __len__(self):

return len(self.first) + len(self.rest)

return 1 + len(self.rest)

Login: 11

Below is a complete Tree class that is identical to the one from lecture, but without a __repr__ method.

class Tree:

"""A binary tree with internal entries."""

def __init__(self , entry , left=None , right=None):

self.entry = entry

self.left = left

self.right = right

(c) (4 pt) The tree_to_list function takes a binary search tree t as input. The tree_to_list function
returns a recursive list, represented as either an Rlist or Alist, that contains all entries of t in sorted
order. Cross out whole lines so that tree_to_list is implemented correctly in as few lines as possible.

Reminder: In a binary search tree, all entries in the left branch are smaller than the root entry and all
entries in the right branch are larger. In addition, each branch is either a binary search tree or None.

def tree_to_list(t):

""" Return a list with the elements of binary search tree t in sorted order.

>>> odds = Tree(7, Tree(3, Tree(1), Tree (5)), Tree(9, None , Tree (11)))

>>> s = tree_to_list(odds)

>>> len(s)

6

>>> [s[i] for i in range(len(s))]

[1, 3, 5, 7, 9, 11]

"""

if t.left is None and t.right is None:

if t is None:

return Rlist.empty

rest = Rlist(t.entry , tree_to_list(t.right))

rest = Alist(t.entry , tree_to_list(t.right))

if t.entry:

if t.left:

return Rlist(tree_to_list(t.left), rest)

return Alist(tree_to_list(t.left), rest)

else:

return rest

return None

(d) (2 pt) Consider a tree t with maximum depth d and total number of entries n. Define a mathematical
function f(d, n) such that calling tree_to_list(t) makes Θ(f(d, n)) recursive calls to tree_to_list.

f(d, n) = n

12

(e) (6 pt) An append-all relation is true if it contains multiple non-empty lists and all but the first list
append to form the first. Cross out whole lines in the facts below so that the queries at the end all give
the correct expected results.

; (fact (append -all () ()))

; (fact (append -all (?a . ?r) (?a . ?s))

(fact (append -all (?a) (?a)))

; (fact (append -all ?all . ?parts))

(fact (append -all (?a . ?s) (?a) . ?t)

(append -all ?s . ?t)

; (append -all ?s ?t)

; (append -all . ?s . ?t)

; (append -all (?a . ?s) (?a) . ?t)

)

(fact (append -all (?a . ?s) (?a . ?r) . ?t)

; (append -all . (?s ?r ?t))

; (append -all (?s) . (?r ?t))

; (append -all (?s) (?r) . (?t))

(append -all ?s ?r . ?t)

)

(query (append -all (a b c d e) (a b) (c) (d e)))

; expect Success!

(query (append -all (a b c d e) (a b c) . ?r))

; expect Success! ; r: ((d) (e)) ; r: ((d e))

(query (append -all (a c) (a b) (c))) ; (a b) & (c) append to form (a b c)

; expect Failed.

(query (append -all (a b c d) () (a b c) () (d))) ; No empty lists

; expect Failed.

Login: 13

SCRATCH PAPER

14

SCRATCH PAPER

Login: 15

SCRATCH PAPER

16

SCRATCH PAPER

