61A Lecture 36

Wednesday, November 28

Systems

Systems research enables the development of applications by
defining and implementing abstractions:

- Operating systems provide a stable, consistent interface to
unreliable, inconsistent hardware.

- Networks provide a simple, robust data transfer interface to
constantly evolving communications infrastructure.

- Databases provide a declarative interface to software that
stores and retrieves information efficiently.

- Distributed systems provide a single-entity-level interface
to a cluster of multiple machines.

A unifying property of effective systems:

Hide complexity, but retain flexibility

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

(Demo)

The values sys.stdin and sys.stdout also provide access to the

Unix standard streams as "files."

A Python "file" is an interface that supports iteration, read,
and write methods.

Using these "files" takes advantage of the operating system
standard stream abstraction.

(Demo)

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?
- Framework: A system used by programmers to build applications.

- Batch processing: All the data is available at the outset, and
results aren't used until processing completes.

- Big Data: A buzzword used to describe data sets so large that
they reveal facts about the world via statistical analysis.

The MapReduce idea:

- Data sets are too big to be analyzed by one machine.

- When using multiple machines, systems issues abound.

« Pure functions enable an abstraction barrier between data
processing logic and distributed system administration.

(Demo)

The Unix Operating System

Essential features of the Unix operating system (and variants):
- Portability: The same operating system on different hardware.
- Multi-Tasking: Many processes run concurrently on a machine.

- Plain Text: Data is stored and shared in text format.

» Modularity: Small tools are composed flexibly via pipes.

standard input p m
L —

f) standard output

standard error

The standard streams in a Unix-like operating system
are conceptually similar to Python iterators.

(Demo)

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

- The mapper takes an iterator over inputs, such as text lines.

- The mapper yields zero or more key-value pairs per input.

((Google MapReduce >

mapper L_

(Is a Big Data framework) —
((For batch processing) p—_—

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

- The reducer takes an iterator over key-value pairs.
- A1l pairs with a given key are consecutive.

« The reducer yields @ or more values,
each associated with that intermediate key.

MapReduce Evaluation Model

Google MapReduce mapper

Is a Big Data framework =
i

For batch processing

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that ke

- The reducer takes an iterator over key-value pairs.
+ A1l pairs with a given key are consecutive.

- The reducer yields @ or more values,
each associated with that intermediate key.

Y.

a: 4
a: 1| p reducer I_ .
a: 1 1 pa: b ir 2
@ é ———————————1_ 0: 5
@ > reducer
@4 1 pe: 5 u: 1
Below-the-Line: Parallel Execution
r-——-—-—--- ———=1 [TT-———-=—°7 [T--———-=-—=2
| Map Task | | | Map Task 2 1 | Map Task 3 1
| I I I 1] 5
| I Lo | I
1 [N [' -
I I 1 I |] g
| | | I | | n
] 1 1] | 1 o
[CRvkives] [k i [ov ks [vk I [y [kvl I
1 | Partitioning Function ‘I || Partitioning Function || || Partitioning Function ‘ 1
- = d = e = == === d wv
=2
f=4
=
J —h
—— ¥, —
o
Sort and Group |1
A "task" is a Ko |!

Unix process
running on a
machine

http://research.google. con/arch. e-0sdi04-slides/i .html

Python Example of a MapReduce Application

<i:}seud 2o3npay

The mapper and reducer are both self-contained Python programs.

- Read from standard input and write to standard output!

Mapper Tell Unix: this is Python)
#!/usr/bin/env python3

import sys
from ucb import main

(The emit function outputs
from mapreduce import emit

text to standard output

a

key and value as a line of

def emit_vowels(line):
for vowel in 'aeiou':
count = line.count(vowel)
if count > 0O:
emit(vowel, count)

Mapper inputs are
lines of text provided
to standard input

for line in sys.stdin:
emit_vowels(line)

Above-the-Line: Execution model

Input ‘

]
Nl

| klwv ‘ k3:v kdv | k4:v k3:v ‘ kd:v ‘ kl:vk3:v |

\
ol
l

Intermediate ‘ kl:vkl:vk2:v

Grouped [Km 2w [[kvan [

55008

!

Output ‘

http://research.google. con/arch. e-0sdi04-slides/i .html

MapReduce Assumptions

Constraints on the mapper and reducer:

+ The mapper must be equivalent to applying a pure function to
each input independently.

- The reducer must be equivalent to applying a pure function to
the sequence of values for a key.
Benefits of functional programming:

- When a program contains only pure functions, call expressions
can be evaluated in any order, lazily, and in parallel.

- Referential transparency: a call expression can be replaced
by its value (or vis versa) without changing the program.

In MapReduce, these functional programming ideas allow:

- Consistent results, however computation is partitioned.

» Re-computation and caching of results, as needed.

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

- Read from standard input and write to standard output!

Reducer

#!/usr/bin/env python3

import sys (_I?kes and returns iterators)
from ucb import main

from mapreduce import emit, group_values_by_key

Input: lines of text representing key-value
pairs, grouped by key

Output: Iterator over (key, value_iterator)
pairs that give all values for each key

for key, value_iterator in group_values_by_key(sys.stdin):
emit(key, sum(value_iterator))

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

- The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

« The framework can run multiple copies of a task and keep the
result of the one that finishes first.

Network locality: Data transfer is expensive.

- The framework tries to schedule map tasks on the machines
that hold the data to be processed.

Monitoring: Will my job finish before dinner?!?

- The framework provides a web-based interface describing jobs.

(Demo)

