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#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit, group_values_by_key

Reducer

for key, value_iterator in group_values_by_key(sys.stdin):
    emit(key, sum(value_iterator))

Takes and returns iterators

Input: lines of text representing key-value 
pairs, grouped by key
Output: Iterator over (key, value_iterator) 
pairs that give all values for each key
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