
61A Lecture 36

Wednesday, November 28

MapReduce

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?

• Framework: A system used by programmers to build applications.

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?

• Framework: A system used by programmers to build applications.
• Batch processing: All the data is available at the outset, and
results aren't used until processing completes.

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?

• Framework: A system used by programmers to build applications.
• Batch processing: All the data is available at the outset, and
results aren't used until processing completes.

• Big Data: A buzzword used to describe data sets so large that
they reveal facts about the world via statistical analysis.

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?

• Framework: A system used by programmers to build applications.
• Batch processing: All the data is available at the outset, and
results aren't used until processing completes.

• Big Data: A buzzword used to describe data sets so large that
they reveal facts about the world via statistical analysis.

The MapReduce idea:

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?

• Framework: A system used by programmers to build applications.
• Batch processing: All the data is available at the outset, and
results aren't used until processing completes.

• Big Data: A buzzword used to describe data sets so large that
they reveal facts about the world via statistical analysis.

The MapReduce idea:

• Data sets are too big to be analyzed by one machine.

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?

• Framework: A system used by programmers to build applications.
• Batch processing: All the data is available at the outset, and
results aren't used until processing completes.

• Big Data: A buzzword used to describe data sets so large that
they reveal facts about the world via statistical analysis.

The MapReduce idea:

• Data sets are too big to be analyzed by one machine.

• When using multiple machines, systems issues abound.

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?

• Framework: A system used by programmers to build applications.
• Batch processing: All the data is available at the outset, and
results aren't used until processing completes.

• Big Data: A buzzword used to describe data sets so large that
they reveal facts about the world via statistical analysis.

The MapReduce idea:

• Data sets are too big to be analyzed by one machine.

• When using multiple machines, systems issues abound.

• Pure functions enable an abstraction barrier between data
processing logic and distributed system administration.

2

MapReduce

MapReduce is a framework for batch processing of Big Data.

What does that mean?

• Framework: A system used by programmers to build applications.
• Batch processing: All the data is available at the outset, and
results aren't used until processing completes.

• Big Data: A buzzword used to describe data sets so large that
they reveal facts about the world via statistical analysis.

The MapReduce idea:

• Data sets are too big to be analyzed by one machine.

• When using multiple machines, systems issues abound.

• Pure functions enable an abstraction barrier between data
processing logic and distributed system administration.

2

(Demo)

Systems

3

Systems

Systems research enables the development of applications by
defining and implementing abstractions:

3

Systems

Systems research enables the development of applications by
defining and implementing abstractions:

• Operating systems provide a stable, consistent interface to
unreliable, inconsistent hardware.

3

Systems

Systems research enables the development of applications by
defining and implementing abstractions:

• Operating systems provide a stable, consistent interface to
unreliable, inconsistent hardware.

• Networks provide a simple, robust data transfer interface to
constantly evolving communications infrastructure.

3

Systems

Systems research enables the development of applications by
defining and implementing abstractions:

• Operating systems provide a stable, consistent interface to
unreliable, inconsistent hardware.

• Networks provide a simple, robust data transfer interface to
constantly evolving communications infrastructure.

• Databases provide a declarative interface to software that
stores and retrieves information efficiently.

3

Systems

Systems research enables the development of applications by
defining and implementing abstractions:

• Operating systems provide a stable, consistent interface to
unreliable, inconsistent hardware.

• Networks provide a simple, robust data transfer interface to
constantly evolving communications infrastructure.

• Databases provide a declarative interface to software that
stores and retrieves information efficiently.

• Distributed systems provide a single-entity-level interface
to a cluster of multiple machines.

3

Systems

Systems research enables the development of applications by
defining and implementing abstractions:

• Operating systems provide a stable, consistent interface to
unreliable, inconsistent hardware.

• Networks provide a simple, robust data transfer interface to
constantly evolving communications infrastructure.

• Databases provide a declarative interface to software that
stores and retrieves information efficiently.

• Distributed systems provide a single-entity-level interface
to a cluster of multiple machines.

A unifying property of effective systems:

3

Systems

Systems research enables the development of applications by
defining and implementing abstractions:

• Operating systems provide a stable, consistent interface to
unreliable, inconsistent hardware.

• Networks provide a simple, robust data transfer interface to
constantly evolving communications infrastructure.

• Databases provide a declarative interface to software that
stores and retrieves information efficiently.

• Distributed systems provide a single-entity-level interface
to a cluster of multiple machines.

A unifying property of effective systems:

Hide complexity, but retain flexibility

3

The Unix Operating System

4

The Unix Operating System

Essential features of the Unix operating system (and variants):

4

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

4

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.

4

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.

4

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.
• Modularity: Small tools are composed flexibly via pipes.

4

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.
• Modularity: Small tools are composed flexibly via pipes.

4

process

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.
• Modularity: Small tools are composed flexibly via pipes.

4

standard input process

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.
• Modularity: Small tools are composed flexibly via pipes.

4

standard input process

Text input

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.
• Modularity: Small tools are composed flexibly via pipes.

4

standard input
standard output

process

Text input

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.
• Modularity: Small tools are composed flexibly via pipes.

4

standard input
standard output

process

Text input
Text output

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.
• Modularity: Small tools are composed flexibly via pipes.

4

standard input
standard output

process

standard error
Text input

Text output

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.
• Modularity: Small tools are composed flexibly via pipes.

4

standard input
standard output

process

standard error

The standard streams in a Unix-like operating system

are conceptually similar to Python iterators.

Text input
Text output

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.
• Multi-Tasking: Many processes run concurrently on a machine.
• Plain Text: Data is stored and shared in text format.
• Modularity: Small tools are composed flexibly via pipes.

4

standard input
standard output

process

standard error

The standard streams in a Unix-like operating system

are conceptually similar to Python iterators.

Text input
Text output

(Demo)

Python Programs in a Unix Environment

5

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

5

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

5

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

5

(Demo)

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

5

(Demo)

The values sys.stdin and sys.stdout also provide access to the
Unix standard streams as "files."

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

5

(Demo)

The values sys.stdin and sys.stdout also provide access to the
Unix standard streams as "files."

A Python "file" is an interface that supports iteration, read,
and write methods.

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

5

(Demo)

The values sys.stdin and sys.stdout also provide access to the
Unix standard streams as "files."

A Python "file" is an interface that supports iteration, read,
and write methods.

Using these "files" takes advantage of the operating system
standard stream abstraction.

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

5

(Demo)

The values sys.stdin and sys.stdout also provide access to the
Unix standard streams as "files."

A Python "file" is an interface that supports iteration, read,
and write methods.

Using these "files" takes advantage of the operating system
standard stream abstraction.

(Demo)

MapReduce Evaluation Model

6

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

6

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

6

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

Google MapReduce
Is a Big Data framework
For batch processing

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting a set
of intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

6

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values,
each associated with that intermediate key.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

MapReduce Evaluation Model

7

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values,
each associated with that intermediate key.

MapReduce Evaluation Model

7

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values,
each associated with that intermediate key.

reducer
a: 6

MapReduce Evaluation Model

7

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values,
each associated with that intermediate key.

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

7

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values,
each associated with that intermediate key.

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

7

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values,
each associated with that intermediate key.

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

7

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

o: 5

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values,
each associated with that intermediate key.

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

7

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

o: 5

u: 1

Reduce phase: For each intermediate key, apply a reducer
function to accumulate all values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values,
each associated with that intermediate key.

Above-the-Line: Execution model

8

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html

Below-the-Line: Parallel Execution

9

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

Below-the-Line: Parallel Execution

9

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

A "task" is a
Unix process
running on a

machine

Below-the-Line: Parallel Execution

9

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

A "task" is a
Unix process
running on a

machine

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

10

MapReduce Assumptions

Constraints on the mapper and reducer:

10

MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a pure function to
each input independently.

10

MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a pure function to
each input independently.

• The reducer must be equivalent to applying a pure function to
the sequence of values for a key.

10

MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a pure function to
each input independently.

• The reducer must be equivalent to applying a pure function to
the sequence of values for a key.

Benefits of functional programming:

10

MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a pure function to
each input independently.

• The reducer must be equivalent to applying a pure function to
the sequence of values for a key.

Benefits of functional programming:
• When a program contains only pure functions, call expressions
can be evaluated in any order, lazily, and in parallel.

10

MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a pure function to
each input independently.

• The reducer must be equivalent to applying a pure function to
the sequence of values for a key.

Benefits of functional programming:
• When a program contains only pure functions, call expressions
can be evaluated in any order, lazily, and in parallel.

• Referential transparency: a call expression can be replaced
by its value (or vis versa) without changing the program.

10

MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a pure function to
each input independently.

• The reducer must be equivalent to applying a pure function to
the sequence of values for a key.

Benefits of functional programming:
• When a program contains only pure functions, call expressions
can be evaluated in any order, lazily, and in parallel.

• Referential transparency: a call expression can be replaced
by its value (or vis versa) without changing the program.

In MapReduce, these functional programming ideas allow:

10

MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a pure function to
each input independently.

• The reducer must be equivalent to applying a pure function to
the sequence of values for a key.

Benefits of functional programming:
• When a program contains only pure functions, call expressions
can be evaluated in any order, lazily, and in parallel.

• Referential transparency: a call expression can be replaced
by its value (or vis versa) without changing the program.

In MapReduce, these functional programming ideas allow:

• Consistent results, however computation is partitioned.

10

MapReduce Assumptions

Constraints on the mapper and reducer:
• The mapper must be equivalent to applying a pure function to
each input independently.

• The reducer must be equivalent to applying a pure function to
the sequence of values for a key.

Benefits of functional programming:
• When a program contains only pure functions, call expressions
can be evaluated in any order, lazily, and in parallel.

• Referential transparency: a call expression can be replaced
by its value (or vis versa) without changing the program.

In MapReduce, these functional programming ideas allow:

• Consistent results, however computation is partitioned.

• Re-computation and caching of results, as needed.

10

Python Example of a MapReduce Application

11

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

11

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

11

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

11

Mapper

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

11

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

11

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

11

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper Tell Unix: this is Python

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

11

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a
key and value as a line of
text to standard output

Tell Unix: this is Python

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

11

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a
key and value as a line of
text to standard output

Tell Unix: this is Python

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

11

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a
key and value as a line of
text to standard output

Mapper inputs are
lines of text provided

to standard input

Tell Unix: this is Python

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

12

Reducer

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

12

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit, group_values_by_key

Reducer

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

12

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit, group_values_by_key

Reducer

Takes and returns iterators

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

12

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit, group_values_by_key

Reducer

Takes and returns iterators

Input: lines of text representing key-value
pairs, grouped by key
Output: Iterator over (key, value_iterator)
pairs that give all values for each key

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

12

#!/usr/bin/env python3

import sys
from ucb import main
from mapreduce import emit, group_values_by_key

Reducer

for key, value_iterator in group_values_by_key(sys.stdin):
 emit(key, sum(value_iterator))

Takes and returns iterators

Input: lines of text representing key-value
pairs, grouped by key
Output: Iterator over (key, value_iterator)
pairs that give all values for each key

What Does the MapReduce Framework Provide

13

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

13

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.
• The MapReduce framework automatically re-runs failed tasks.

13

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.
• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

13

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.
• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.
• The framework can run multiple copies of a task and keep the
result of the one that finishes first.

13

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.
• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.
• The framework can run multiple copies of a task and keep the
result of the one that finishes first.

Network locality: Data transfer is expensive.

13

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.
• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.
• The framework can run multiple copies of a task and keep the
result of the one that finishes first.

Network locality: Data transfer is expensive.
• The framework tries to schedule map tasks on the machines
that hold the data to be processed.

13

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.
• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.
• The framework can run multiple copies of a task and keep the
result of the one that finishes first.

Network locality: Data transfer is expensive.
• The framework tries to schedule map tasks on the machines
that hold the data to be processed.

Monitoring: Will my job finish before dinner?!?

13

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.
• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.
• The framework can run multiple copies of a task and keep the
result of the one that finishes first.

Network locality: Data transfer is expensive.
• The framework tries to schedule map tasks on the machines
that hold the data to be processed.

Monitoring: Will my job finish before dinner?!?
• The framework provides a web-based interface describing jobs.

13

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.
• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.
• The framework can run multiple copies of a task and keep the
result of the one that finishes first.

Network locality: Data transfer is expensive.
• The framework tries to schedule map tasks on the machines
that hold the data to be processed.

Monitoring: Will my job finish before dinner?!?
• The framework provides a web-based interface describing jobs.

13

(Demo)

