
61A Lecture 34

Monday, November 19

Logic Language Review

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

If a query has more than one relation, all must be satisfied.

The interpreter lists all bindings of variables to values that
it can find to satisfy the query.

2

Conclusion

Hypothesis

Simple fact

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into
an anagram of the rest of the list.

3

a r t

 r t

 t r

 ar t
 rat
 r ta

 at r
 tar
 t ra

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with element

Demo

Pattern Matching

The basic operation of the Logic interpreter is to attempt to
unify two relations.

Unification is finding an assignment to variables that makes
two relations the same.

4

((a b) c (a b))
(?x c ?x)

True, {x: (a b)}

((a b) c (a b))
((a ?y) ?z (a b))

True, {y: b, z: c}

((a b) c (a b))
(?x ?x ?x)

False

Unification

Unification recursively unifies each pair of corresponding
elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.

2. Establish new bindings to unify elements.

5

((a b) c (a b))

(?x c ?x)

x: (a b){ }

((a b) c (a b))
(?x ?x ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

 c
 (a b)

Lookup

Success! Failure.

Symbols/relations
without variables
only unify if

they are the same

Unification with Two Variables

Two relations that contain variables can be unified as well.

6

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Substituting values for variables may require multiple steps.

lookup('?x') (a ?y c) lookup('?y') b

Implementing Unification

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and \
 unify(e.second, f.second, env)

7

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Unification
recursively
unifies each
pair of
corresponding
elements

2. Establish new
bindings to unify

elements.

Searching for Proofs

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

8

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))
{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))
conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis
(app ?r2 (c d) (c d))

{r2: (), x: (c d)}
left: (e b)(b . ()))

Variables are local
to facts & queries

(app () ?x ?x) (e .

Depth-First Search

The space of facts is searched exhaustively, starting from the
query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored
exhaustively before another one is considered.

def search(clauses, env):
 for fact in facts:
 unify(conclusion of fact, first clause, env) -> env_head
 if unification succeeds:
 search(hypotheses of fact, env_head) -> env_rule
 search(rest of clauses, env_rule) -> result
 yield each result

• Limiting depth of the search avoids infinite loops.
• Each time a fact is used, its variables are renamed.
• Bindings are stored in separate frames to allow backtracking.

9

Implementing Depth-First Search

def search(clauses, env, depth):

 if clauses is nil:

 yield env

 elif DEPTH_LIMIT is None or depth <= DEPTH_LIMIT:

 for fact in facts:

 fact = rename_variables(fact, get_unique_id())

 env_head = Frame(env)

 if unify(fact.first, clauses.first, env_head):

 for env_rule in search(fact.second, env_head, depth+1):

 for result in search(clauses.second, env_rule, depth+1):

 yield result

10

Whatever calls search can
access all yielded results

