61A Lecture 34

Monday, November 19

Logic Language Review

Logic Language Review

Expressions begin with query or fact followed by relations.

Logic Language Review

Expressions begin with query or fact followed by relations. Expressions and their relations are Scheme lists.

Logic Language Review

Expressions begin with query or fact followed by relations. Expressions and their relations are Scheme lists. (fact (append-to-form () ?x ?x))

Logic Language Review

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists. (fact (append-to-form () ?x ?x)) Simple fact

Logic Language Review

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.

Logic Language Review

Expressions begin with query or fact followed by relations. Expressions and their relations are Scheme lists.

Logic Language Review

Expressions begin with query or fact followed by relations. Expressions and their relations are Scheme lists.

Logic Language Review

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact (fact (append-to-form (?a . ?r) ?y (?a . ?z)) (append-to-form ?r ?y ?z))
(query (append-to-form ?left (c d) (e b c d))) Success!
left: (e b)

Logic Language Review

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)
If a query has more than one relation, all must be satisfied.

Logic Language Review

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact
(fact (append-to-form (?a . ?r) ?y (?a . ?z)) Conclusion
(append-to-form ?r ?y ?z)) Hypothesis
(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)
If a query has more than one relation, all must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Logic Example: Anagrams

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.
$a \mid r t$
r t
ar t
rat

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.
$a \mid r t$
r t
ar t rat
r ta

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.
$a \mid r t$

ar t rat r ta
t r

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.
$a \mid r t$
r t
ar t rat r ta
t r
at r

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

r ta
t r
at r
tar

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.
$r \mathrm{t}$
ar t
rat
r ta
$t r$
at r
tar
$t r a$

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.
(fact (insert ?a ?r (?a . ?r)))
r t
ar t
rat
r ta
t r
at r
tar
t ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

$r t$
ar t
rat
r ta
t r
at r
tar
t ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

r t
ar t
rat
r ta
t r
at r
tar
t ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

r t
ar t
rat
r ta
t r
at r
tar
t ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

ar t
rat
r ta
t r
at r
tar
t ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

$r t$
$a r t$
$r a t$
$r t a$
t r
at r
tar
t ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

$r t$
art
rat
r ta
t r
at r
tar
t ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

r t
ar t
rat
r ta
t r
at r
tar
t ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

r t
ar t
rat
r ta
t r
at r
tar
t ra

Logic Example: Anagrams

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

Demo

Pattern Matching

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.
($\left(\begin{array}{ll}a & b\end{array}\right) \mathrm{c}(\mathrm{a} b)$)

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.
($\left.\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right) \mathrm{c}(\mathrm{a} b)$)
(\quad ? $\mathrm{C} \quad$? x)

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.
$\left.\begin{array}{ccc}\left(\begin{array}{ccc}(a & b\end{array}\right) & c & (a \quad b) \\ \left(\begin{array}{ccc}a & c & ? x\end{array}\right)\end{array}\right\rangle \operatorname{True},\{x:(a b)\}$

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.
$\left.\begin{array}{ccc}\left(\begin{array}{ccc}(\mathrm{a} & \mathrm{b}) & \mathrm{c} \\ (\mathrm{a} & \mathrm{b})\end{array}\right) \\ (\mathrm{ex} & \mathrm{c} & ? \mathrm{x}\end{array}\right) \quad \mathrm{True},\{\mathrm{x}:(\mathrm{a} b)\}$
((a b) c (a b))

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.
$\left.\begin{array}{ccc}\left(\begin{array}{cc}a & b\end{array}\right) & \binom{a}{b} \\ \left(\begin{array}{c}a\end{array}\right)\end{array}\right\rangle \operatorname{True},\{x:(a b)\}$
($(\mathrm{a}$ b) c (a b))
((a ?y) ?z (a b))

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

($(\mathrm{a} \quad \mathrm{b}) \mathrm{C} \quad(\mathrm{a}$
b))
((a ?y) ?z (a
b))

True, $\{y: b, z: c\}$
$\left(\begin{array}{ll}(a b) & b \\ (a b)\end{array}\right)$
(? \quad ? \quad ? \quad)

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

($(\mathrm{a} \quad \mathrm{b}) \mathrm{C} \quad(\mathrm{a}$
b))
((a ?y) ?z (a
b))

True, $\{y: b, z: c\}$
$\left(\begin{array}{ll}(a \quad b) & C \\ (a b\end{array}\right)$
False

Unification

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.
($(\mathrm{a} \quad \mathrm{b}) \mathrm{c}(\mathrm{a} \mathrm{b})$)
(\quad ? $\quad \mathrm{c} \quad$? $\mathrm{x} \quad$)
$\{\quad\}$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.
$\left(\begin{array}{cccc}\left(\begin{array}{ccc}a & b\end{array}\right. & c & \left(\begin{array}{ll}a & b\end{array}\right)\end{array}\right)$
\{

\}

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.
$\left(\begin{array}{cccc}\left(\begin{array}{ccc}a & b\end{array}\right) & c & \left(\begin{array}{ll}a & b\end{array}\right)\end{array}\right)$
$\{x:(a b)\}$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

$\{x:(a b)\}$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

$\{x:(a b)\}$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Lookup
(ab)
(ab)
$\{x:(a b)\}$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

$$
\begin{aligned}
& \text { Lookup } \\
& \left(\begin{array}{ll}
\text { a } & \mathrm{b}) \\
(\mathrm{a} & \mathrm{b})
\end{array}\right. \\
&
\end{aligned}
$$

$$
\{x:(a b)\}
$$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

$$
\begin{aligned}
& \text { Lookup } \\
& \left(\begin{array}{ll}
\text { a } & \text { b }) \\
(a & b
\end{array}\right)
\end{aligned}
$$

$\{x:(a b)\}$
Success!

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification with Two Variables

Unification with Two Variables

Two relations that contain variables can be unified as well.

Unification with Two Variables

Two relations that contain variables can be unified as well.
(? \quad ? \quad)
($(\mathrm{a}$? y c) $(\mathrm{a} \mathrm{b}$? z$)$)

Unification with Two Variables

Two relations that contain variables can be unified as well.
$\left.\begin{array}{cc}\left(\begin{array}{cc}? x & ? x\end{array}\right) \\ \left(\begin{array}{lll}\left(\begin{array}{ll}\mathrm{a} & \mathrm{P}\end{array}\right) & (\mathrm{a} \quad \mathrm{b} \text { ? z })\end{array}\right)\end{array}\right\rangle$ True, $\{$

Unification with Two Variables

Two relations that contain variables can be unified as well.

Unification with Two Variables

Two relations that contain variables can be unified as well.

Unification with Two Variables

Two relations that contain variables can be unified as well.

Unification with Two Variables

Two relations that contain variables can be unified as well.

$$
\begin{gathered}
\text { Lookup } \\
\left(\begin{array}{lll}
\mathrm{a} & ? \mathrm{y} & \mathrm{C}
\end{array}\right) \\
\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & ? \mathrm{z}
\end{array}\right)
\end{gathered}
$$

Unification with Two Variables

Two relations that contain variables can be unified as well.

Unification with Two Variables

Two relations that contain variables can be unified as well.

Lookup

Unification with Two Variables

Two relations that contain variables can be unified as well.

Unification with Two Variables

Two relations that contain variables can be unified as well.

Lookup

Unification with Two Variables

Two relations that contain variables can be unified as well.

Unification with Two Variables

Two relations that contain variables can be unified as well.

Unification with Two Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.

Unification with Two Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
lookup('?x')

Unification with Two Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
lookup('?x') $\triangleleft(\mathrm{a}$? y c)

Unification with Two Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
lookup('?x') $\Delta(\mathrm{a}$? y c) lookup('?y')

Unification with Two Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
lookup('?x') $\Rightarrow(\mathrm{a}$?y c) lookup('?y') $\Rightarrow \mathrm{b}$

Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
    if e == f:
        return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
    elif scheme_atomp(e) or scheme_atomp(f):
        return False
    else:
        return unify(e.first, f.first, env) and \
```


Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
```

1. Look up variables in the current environment
```
            return True
    elif isvar(e):
            env.define(e, f)
            return True
    elif isvar(f):
            env.define(f, e)
            return True
    elif scheme_atomp(e) or scheme_atomp(f):
            return False
    else:
            return unify(e.first, f.first, env) and \
```


Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
        return True
    elif isvar(e):
    return True
    elif isvar(f):
        env.define(f, e)
        return True
    elif scheme_atomp(e) or scheme_atomp(f):
        return False
    else:
        return unify(e.first, f.first, env) and \
```


Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env) 
1. Look up variables in the current environment
Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.
elif scheme_atomp(e) or scheme_atomp(f): return False
else:
\[
\begin{gathered}
\text { return unify(e.first, f.first, env) and } \backslash \\
\text { unify(e.second, f.second, env) }
\end{gathered}
\]
```


Implementing Unification

Searching for Proofs

Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.

Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.

```
(fact (app () ?x ?x))
(fact (app (?a | ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))
```

Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a . ?z)) (app ?r ?y ?z))
(query (app ?left (c d) (e b c d)))
(app ?left (c d) (e b c d))

Searching for Proofs

The Logic interpreter searches

```
(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))
```

(app ?left (c d) (e b c d))
(app (?a. ?r) ?y (?a . ?z))

Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.

```
(fact (app () ?x ?x))
(fact (app (?a | ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))
```

(app ?left (c d) (e b c d))
\{a: e, y: (c d), z: (b c d), left: (?a . ?r) \}
(app (?a . ?r) ?y (?a . ?z))

Searching for Proofs

```
The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.
```

```
(fact (app () ?x ?x))
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))
(query (app ?left (c d) (e b c d)))
(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))

```

\section*{Searching for Proofs}
```

The Logic interpreter searches (fact (app () ?x ?x))
the space of facts to find
unifying facts and an env that
prove the query to be true.
(fact (app (?a P ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))
(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
Variables are local
to facts \& queries

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
Variables are local
to facts \& queries

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a | ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
conclusion <- hypothesis to facts \& queries

```
(app 3 2 ( \(c\) d) (c d))

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
conclusion <- hypothesis
Variables are local
to facts \& queries
(app ?r2 (c d) (c d))
(app () ?x ?x)

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
conclusion <- hypothesis
Variables are local
to facts \& queries
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x)

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
conclusion <- hypothesis
to facts \& queries
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x)
left:

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r);}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
conclusion <- hypothesis
to facts \& queries
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x)
left:

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r);}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
conclusion <- hypothesis
to facts \& queries
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x)
left:

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r);}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
conclusion <- hypothesis
to facts \& queries
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x)
left: (e .

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r);}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2);}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
conclusion <- hypothesis to facts \& queries
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x)

Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.

```
(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))
```

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left: (?a . ?r);}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2);}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
    conclusion <- hypothesis
to facts & queries
(app ?r2 (c d) (c d))
    {r2: (), x: (c d)}
(app () ?x ?x)

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r);}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2);}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
conclusion <- hypothesis to facts \& queries
(app ?r2 (c d) (c d))
{r2: (), x: (c d)}
(app () ?x ?x)

Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.

```
(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))
```

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left: (?a . ?r);}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2);}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
    conclusion <- hypothesis
to facts & queries
(app ?r2 (c d) (c d))
    {r2: ();, x: (c d)}
(app () ?x ?x)

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r);}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2);}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
conclusion <- hypothesis
to facts \& queries
(app ?r2 (c d) (c d))
{r2: ();, x: (c d)}
(app () ?x ?x)
left: (e . (b . ()))

```

\section*{Searching for Proofs}

The Logic interpreter searches the space of facts to find unifying facts and an inv that prove the query to be true.
```

(fact (app () ?x ?x))
(fact (app (?a . ?r) ?y (?a | ?z))
(query (app ?left (c d) (e b c d)))

```
```

(app ?left (c d) (e b c d))
{a: e, y: (c d), z: (b c d), left: (?a . ?r);}
(app (?a . ?r) ?y (?a . ?z))
conclusion <- hypothesis
(app ?r (c d) (b c d)))
{a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2);}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2)) Variables are local
conclusion <- hypothesis
to facts \& queries
(app ?r2 (c d) (c d))
{r2: (); x: (c d)}
(app () ?x ?x)
left: (e. (b . ())) \triangleleft(e b)

```

\section*{Depth-First Search}

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env):

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env): for fact in facts:

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env):
for fact in facts:
unify(conclusion of fact, first clause, env) -> env_head

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env):
for fact in facts:
unify(conclusion of fact, first clause, env) -> env_head if unification succeeds:

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env): for fact in facts: unify(conclusion of fact, first clause, env) -> env_head if unification succeeds: search(hypotheses of fact, env_head) -> env_rule

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env): for fact in facts: unify(conclusion of fact, first clause, env) -> env_head if unification succeeds:
search(hypotheses of fact, env_head) -> env_rule search(rest of clauses, env_rule) -> result

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env): for fact in facts: unify(conclusion of fact, first clause, env) -> env_head if unification succeeds:
search(hypotheses of fact, env_head) -> env_rule search(rest of clauses, env_rule) -> result yield each result

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env): for fact in facts: unify(conclusion of fact, first clause, env) -> env_head if unification succeeds:
search(hypotheses of fact, env_head) -> env_rule search(rest of clauses, env_rule) -> result yield each result
- Limiting depth of the search avoids infinite loops.

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env): for fact in facts: unify(conclusion of fact, first clause, env) -> env_head if unification succeeds:
search(hypotheses of fact, env_head) -> env_rule search(rest of clauses, env_rule) -> result yield each result
- Limiting depth of the search avoids infinite loops.
- Each time a fact is used, its variables are renamed.

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: A possible proof approach is explored exhaustively before another one is considered.
def search(clauses, env): for fact in facts:
unify(conclusion of fact, first clause, env) -> env_head if unification succeeds:
search(hypotheses of fact, env_head) -> env_rule search(rest of clauses, env_rule) -> result yield each result
- Limiting depth of the search avoids infinite loops.
- Each time a fact is used, its variables are renamed.
- Bindings are stored in separate frames to allow backtracking.

\section*{Implementing Depth-First Search}
```

def search(clauses, env, depth):
if clauses is nil:
yield env
elif DEPTH_LIMIT is None or depth <= DEPTH_LIMIT:
for fact in facts:
fact = rename_variables(fact, get_unique_id())
env_head = Frame(env)
if unify(fact.first, clauses.first, env_head):
for env_rule in search(fact.second, env_head, depth+1):
for result in search(clauses.second, env_rule, depth+1):
yield result

```

\section*{Implementing Depth-First Search}
```

def search(clauses, env, depth):
if clauses is nil:
yield env
elif DEPTH_LIMIT is None or depth <= DEPTH_LIMIT:
for fact in facts:
fact = rename_variables(fact, get_unique_id())
env_head = Frame(env)
if unify(fact.first, clauses.first, env_head):
for env_rule in search(fact.second, env_head, depth+1):
for result in search(clauses.second, env_rule, depth+1):
yield result

```

\section*{Implementing Depth-First Search}
```

def search(clauses, env, depth):
if clauses is nil:
yield env
elif DEPTH_LIMIT is None or depth <= DEPTH_LIMIT:
for fact in facts:
fact = rename_variables(fact, get_unique_id())
env_head = Frame(env)
if unify(fact.first, clauses.first, env_head):
for env_rule in search(fact.second, env_head, depth+1):
for result in search(clauses.second, env_rule, depth+1):
yield result

```

\section*{Implementing Depth-First Search}
```

def search(clauses, env, depth):
if clauses is nil:
yield env
elif DEPTH_LIMIT is None or depth <= DEPTH_LIMIT:
for fact in facts:
fact = rename_variables(fact, get_unique_id())
env_head = Frame(env)
if unify(fact.first, clauses.first, env_head):
for env_rule in search(fact.second, env_head, depth+1):
for result in search(clauses.second, env_rule, depth+1):
yield result
Whatever calls search can

```
```

