
61A Lecture 33

Friday, November 16

Databases

A database is a collection of records (tuples) and an
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

The language interpreter is free to compute the result in any
way it deems appropriate.

http://www.headfirstlabs.com/sql_hands_on/

Logical/Declarative Programming

The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

By contrast, in imperative languages such as Python & Scheme:

• A "program" is a description of procedures.

• The interpreter carries out execution/evaluation rules.

Building a universal problem solver is a difficult task.

Declarative programming languages compromise by solving only a
subset of problems.

They typically trade off data scale for problem complexity.

3

The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project + ideas from Prolog

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes John dogs) is a relation.

• Implementation fits on a single sheet of paper (next lecture)

Today's theme:

4http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi

Simple Facts

A simple fact expression in the Logic language declares a
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax:

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

logic> (fact (parent fillmore delano))

logic> (fact (parent fillmore grover))

logic> (fact (parent eisenhower fillmore))

E

G

F

A

B C

D

Herbert

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• In Scheme, we write (abs -3) to call abs on -3. It returns 3.

• In Logic, (abs -3 3) asserts that the abs of -3 is 3.

For example, if we wanted to assert that 1 + 2 = 3,

(add 1 2 3)

Why declare knowledge in this way? It will allow us to solve
problems in two directions:

(add 1 2 _)

(add _ 2 3)

(add 1 _ 3)

6

Queries

A query contains one or more relations. The Logic interpreter
returns whether (& how) they are all simultaneously satisfied.

Queries may contain variables: symbols starting with ?

7

logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

A

B C

D G

Herbert

F

E

logic> (query (parent abraham ?child))
Success!
child: barack
child: clinton

Compound Facts

A fact can include multiple relations and variables as well.

8

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all <hypothesisI> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

A

B C

D G

Herbert

F

E

logic> (query (child ?child fillmore))
Success!
child: abraham
child: delano
child: grover

logic> (query (child eisenhower clinton))
Failure.

Recursive Facts

A fact is recursive if the same relation is mentioned in a
hypothesis and the conclusion.

9

logic> (fact (ancestor ?a ?y) (parent ?a ?y))

logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (query (ancestor ?a barack)
 (ancestor ?a herbert))
Success!
a: fillmore
a: eisenhower

A

B C

D G

Herbert

F

E

Demo

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of
relations for each query to find a satisfying assignment.

10

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

(parent delano herbert) ; (1), a simple fact

(ancestor delano herbert) ; (2), from (1) and the 1st ancestor fact

(parent fillmore delano) ; (3), a simple fact

(ancestor fillmore herbert) ; (4), from (2), (3), & the 2nd ancestor fact

logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

Hierarchical Facts

Relations can contain relations in addition to atoms.

11

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))

Variables can refer to atoms or relations.

logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?info))
Success!
info: (color white)

A

B C

D G

H

F

E

Example: Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

12

logic> (query (dog (name ?name) (color ?color))

 (ancestor ?ancestor ?name)

 (dog (name ?ancestor) (color ?color)))

Success!

name: barack color: tan ancestor: eisenhower

name: clinton color: white ancestor: abraham

name: grover color: tan ancestor: eisenhower

name: herbert color: brown ancestor: fillmore

A

B C

D G

H

F

E

Example: Appending Lists

Two lists append to form a third list if:

• The first list is empty and the second and third are the same

• The rest of 1 and 2 append to form the rest of 3

13

logic> (fact (append-to-form () ?x ?x))

logic> (fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

Demo

