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A database is a collection of records (tuples) and an 
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely 
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

The language interpreter is free to compute the result in any 
way it deems appropriate.

http://www.headfirstlabs.com/sql_hands_on/
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The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

By contrast, in imperative languages such as Python & Scheme:

• A "program" is a description of procedures.

• The interpreter carries out execution/evaluation rules.

Building a universal problem solver is a difficult task.

Declarative programming languages compromise by solving only a 
subset of problems.

They typically trade off data scale for problem complexity.
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• Based on the Scheme project + ideas from Prolog

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes John dogs) is a relation. 

• Implementation fits on a single sheet of paper (next lecture)

Today's theme:
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(ancestor fillmore herbert)   ; (4), from (2), (3), & the 2nd ancestor fact

logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))
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Example: Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

12

logic> (query (dog (name ?name) (color ?color))

              (ancestor ?ancestor ?name)

              (dog (name ?ancestor) (color ?color)))

Success!

name: barack    color: tan      ancestor: eisenhower

name: clinton   color: white    ancestor: abraham

name: grover    color: tan      ancestor: eisenhower

name: herbert   color: brown    ancestor: fillmore
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Example: Appending Lists

Two lists append to form a third list if:

• The first list is empty and the second and third are the same

• The rest of 1 and 2 append to form the rest of 3

13

logic> (fact (append-to-form () ?x ?x))

logic> (fact (append-to-form (?a . ?r) ?y (?a . ?z)) 
             (append-to-form ?r ?y ?z))

Demo


