
61A Lecture 33

Friday, November 16



Databases

2



Databases

A database is a collection of records (tuples) and an 
interface for adding, editing, and retrieving records.

2



Databases

A database is a collection of records (tuples) and an 
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely 
used programming language on Earth.

2



Databases

A database is a collection of records (tuples) and an 
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely 
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2



Databases

A database is a collection of records (tuples) and an 
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely 
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2http://www.headfirstlabs.com/sql_hands_on/



Databases

A database is a collection of records (tuples) and an 
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely 
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

http://www.headfirstlabs.com/sql_hands_on/



Databases

A database is a collection of records (tuples) and an 
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely 
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

http://www.headfirstlabs.com/sql_hands_on/



Databases

A database is a collection of records (tuples) and an 
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely 
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

The language interpreter is free to compute the result in any 
way it deems appropriate.

http://www.headfirstlabs.com/sql_hands_on/



Logical/Declarative Programming

3



Logical/Declarative Programming

The principal characteristics of declarative languages:

3



Logical/Declarative Programming

The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

3



Logical/Declarative Programming

The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

3



Logical/Declarative Programming

The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

By contrast, in imperative languages such as Python & Scheme:

3



Logical/Declarative Programming

The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

By contrast, in imperative languages such as Python & Scheme:

• A "program" is a description of procedures.

3



Logical/Declarative Programming

The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

By contrast, in imperative languages such as Python & Scheme:

• A "program" is a description of procedures.

• The interpreter carries out execution/evaluation rules.

3



Logical/Declarative Programming

The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

By contrast, in imperative languages such as Python & Scheme:

• A "program" is a description of procedures.

• The interpreter carries out execution/evaluation rules.

Building a universal problem solver is a difficult task.

3



Logical/Declarative Programming

The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

By contrast, in imperative languages such as Python & Scheme:

• A "program" is a description of procedures.

• The interpreter carries out execution/evaluation rules.

Building a universal problem solver is a difficult task.

Declarative programming languages compromise by solving only a 
subset of problems.

3



Logical/Declarative Programming

The principal characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

By contrast, in imperative languages such as Python & Scheme:

• A "program" is a description of procedures.

• The interpreter carries out execution/evaluation rules.

Building a universal problem solver is a difficult task.

Declarative programming languages compromise by solving only a 
subset of problems.

They typically trade off data scale for problem complexity.

3



The Logic Language

4



The Logic Language

The Logic language is invented for this course.

4



The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project + ideas from Prolog

4



The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project + ideas from Prolog

• Expressions are facts or queries, which contain relations.

4



The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project + ideas from Prolog

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

4



The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project + ideas from Prolog

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes John dogs) is a relation. 

4



The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project + ideas from Prolog

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes John dogs) is a relation. 

• Implementation fits on a single sheet of paper (next lecture)

4



The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project + ideas from Prolog

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes John dogs) is a relation. 

• Implementation fits on a single sheet of paper (next lecture)

Today's theme:

4



The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project + ideas from Prolog

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes John dogs) is a relation. 

• Implementation fits on a single sheet of paper (next lecture)

Today's theme:

4http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi



Simple Facts

5



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

5



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

5



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

5



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

5



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

D

Herbert



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

D

Herbert



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

A

B

D

Herbert



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

A

B

D

Herbert



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

A

B C

D

Herbert



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

F

A

B C

D

Herbert



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

logic> (fact (parent fillmore delano))

F

A

B C

D

Herbert



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

logic> (fact (parent fillmore delano))

logic> (fact (parent fillmore grover))

G

F

A

B C

D

Herbert



Simple Facts

A simple fact expression in the Logic language declares a 
relation to be true.

Let's say I want to track my many dogs' ancestry.

Language Syntax: 

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

5

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

logic> (fact (parent fillmore delano))

logic> (fact (parent fillmore grover))

logic> (fact (parent eisenhower fillmore))

E

G

F

A

B C

D

Herbert



Relations are Not Procedure Calls

6



Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

6



Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• In Scheme, we write (abs -3) to call abs on -3. It returns 3.

6



Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• In Scheme, we write (abs -3) to call abs on -3. It returns 3.

• In Logic, (abs -3 3) asserts that the abs of -3 is 3.

6



Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• In Scheme, we write (abs -3) to call abs on -3. It returns 3.

• In Logic, (abs -3 3) asserts that the abs of -3 is 3.

For example, if we wanted to assert that 1 + 2 = 3, 

6



Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• In Scheme, we write (abs -3) to call abs on -3. It returns 3.

• In Logic, (abs -3 3) asserts that the abs of -3 is 3.

For example, if we wanted to assert that 1 + 2 = 3, 

(add 1 2 3)

6



Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• In Scheme, we write (abs -3) to call abs on -3. It returns 3.

• In Logic, (abs -3 3) asserts that the abs of -3 is 3.

For example, if we wanted to assert that 1 + 2 = 3, 

(add 1 2 3)

Why declare knowledge in this way?  It will allow us to solve 
problems in two directions:

6



Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• In Scheme, we write (abs -3) to call abs on -3. It returns 3.

• In Logic, (abs -3 3) asserts that the abs of -3 is 3.

For example, if we wanted to assert that 1 + 2 = 3, 

(add 1 2 3)

Why declare knowledge in this way?  It will allow us to solve 
problems in two directions:

(add 1 2 _)

6



Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• In Scheme, we write (abs -3) to call abs on -3. It returns 3.

• In Logic, (abs -3 3) asserts that the abs of -3 is 3.

For example, if we wanted to assert that 1 + 2 = 3, 

(add 1 2 3)

Why declare knowledge in this way?  It will allow us to solve 
problems in two directions:

(add 1 2 _)

(add _ 2 3)

6



Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• In Scheme, we write (abs -3) to call abs on -3. It returns 3.

• In Logic, (abs -3 3) asserts that the abs of -3 is 3.

For example, if we wanted to assert that 1 + 2 = 3, 

(add 1 2 3)

Why declare knowledge in this way?  It will allow us to solve 
problems in two directions:

(add 1 2 _)

(add _ 2 3)

(add 1 _ 3)

6



Queries

7

A

B C

D G

Herbert

F

E



Queries

A query contains one or more relations.  The Logic interpreter 
returns whether (& how) they are all simultaneously satisfied.

7

A

B C

D G

Herbert

F

E



Queries

A query contains one or more relations.  The Logic interpreter 
returns whether (& how) they are all simultaneously satisfied.

Queries may contain variables: symbols starting with ?

7

A

B C

D G

Herbert

F

E



Queries

A query contains one or more relations.  The Logic interpreter 
returns whether (& how) they are all simultaneously satisfied.

Queries may contain variables: symbols starting with ?

7

logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

A

B C

D G

Herbert

F

E



Queries

A query contains one or more relations.  The Logic interpreter 
returns whether (& how) they are all simultaneously satisfied.

Queries may contain variables: symbols starting with ?

7

logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

A

B C

D G

Herbert

F

E

logic> (query (parent abraham ?child))



Queries

A query contains one or more relations.  The Logic interpreter 
returns whether (& how) they are all simultaneously satisfied.

Queries may contain variables: symbols starting with ?

7

logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

A

B C

D G

Herbert

F

E

logic> (query (parent abraham ?child))
Success!



Queries

A query contains one or more relations.  The Logic interpreter 
returns whether (& how) they are all simultaneously satisfied.

Queries may contain variables: symbols starting with ?

7

logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

A

B C

D G

Herbert

F

E

logic> (query (parent abraham ?child))
Success!
child: barack



Queries

A query contains one or more relations.  The Logic interpreter 
returns whether (& how) they are all simultaneously satisfied.

Queries may contain variables: symbols starting with ?

7

logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

A

B C

D G

Herbert

F

E

logic> (query (parent abraham ?child))
Success!
child: barack
child: clinton



Queries

A query contains one or more relations.  The Logic interpreter 
returns whether (& how) they are all simultaneously satisfied.

Queries may contain variables: symbols starting with ?

7

logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

A

B C

D G

Herbert

F

E

logic> (query (parent abraham ?child))
Success!
child: barack
child: clinton



Compound Facts

8



Compound Facts

A fact can include multiple relations and variables as well.

8



Compound Facts

A fact can include multiple relations and variables as well.

8

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)



Compound Facts

A fact can include multiple relations and variables as well.

8

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all <hypothesisI> are true.



Compound Facts

A fact can include multiple relations and variables as well.

8

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all <hypothesisI> are true.

A

B C

D G

Herbert

F

E



Compound Facts

A fact can include multiple relations and variables as well.

8

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all <hypothesisI> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

A

B C

D G

Herbert

F

E



Compound Facts

A fact can include multiple relations and variables as well.

8

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all <hypothesisI> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

A

B C

D G

Herbert

F

E



Compound Facts

A fact can include multiple relations and variables as well.

8

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all <hypothesisI> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

A

B C

D G

Herbert

F

E

logic> (query (child eisenhower clinton))
Failure.



Compound Facts

A fact can include multiple relations and variables as well.

8

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all <hypothesisI> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

A

B C

D G

Herbert

F

E

logic> (query (child ?child fillmore))
Success!
child: abraham
child: delano
child: grover

logic> (query (child eisenhower clinton))
Failure.



Recursive Facts

9

A

B C

D G

Herbert

F

E



Recursive Facts

A fact is recursive if the same relation is mentioned in a 
hypothesis and the conclusion.

9

A

B C

D G

Herbert

F

E



Recursive Facts

A fact is recursive if the same relation is mentioned in a 
hypothesis and the conclusion.

9

logic> (fact (ancestor ?a ?y) (parent ?a ?y))

logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

A

B C

D G

Herbert

F

E



Recursive Facts

A fact is recursive if the same relation is mentioned in a 
hypothesis and the conclusion.

9

logic> (fact (ancestor ?a ?y) (parent ?a ?y))

logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

A

B C

D G

Herbert

F

E



Recursive Facts

A fact is recursive if the same relation is mentioned in a 
hypothesis and the conclusion.

9

logic> (fact (ancestor ?a ?y) (parent ?a ?y))

logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (query (ancestor ?a barack) 
              (ancestor ?a herbert))
Success!
a: fillmore
a: eisenhower

A

B C

D G

Herbert

F

E



Recursive Facts

A fact is recursive if the same relation is mentioned in a 
hypothesis and the conclusion.

9

logic> (fact (ancestor ?a ?y) (parent ?a ?y))

logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (query (ancestor ?a barack) 
              (ancestor ?a herbert))
Success!
a: fillmore
a: eisenhower

A

B C

D G

Herbert

F

E

Demo



Searching to Satisfy Queries

10



Searching to Satisfy Queries

The Logic interpreter performs a search in the space of 
relations for each query to find a satisfying assignment.

10



Searching to Satisfy Queries

The Logic interpreter performs a search in the space of 
relations for each query to find a satisfying assignment.

10

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower



Searching to Satisfy Queries

The Logic interpreter performs a search in the space of 
relations for each query to find a satisfying assignment.

10

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower



Searching to Satisfy Queries

The Logic interpreter performs a search in the space of 
relations for each query to find a satisfying assignment.

10

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))



Searching to Satisfy Queries

The Logic interpreter performs a search in the space of 
relations for each query to find a satisfying assignment.

10

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))



Searching to Satisfy Queries

The Logic interpreter performs a search in the space of 
relations for each query to find a satisfying assignment.

10

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

(parent delano herbert)       ; (1), a simple fact

logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))



Searching to Satisfy Queries

The Logic interpreter performs a search in the space of 
relations for each query to find a satisfying assignment.

10

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

(parent delano herbert)       ; (1), a simple fact

(ancestor delano herbert)     ; (2), from (1) and the 1st ancestor fact

logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))



Searching to Satisfy Queries

The Logic interpreter performs a search in the space of 
relations for each query to find a satisfying assignment.

10

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

(parent delano herbert)       ; (1), a simple fact

(ancestor delano herbert)     ; (2), from (1) and the 1st ancestor fact

(parent fillmore delano)      ; (3), a simple fact

logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))



Searching to Satisfy Queries

The Logic interpreter performs a search in the space of 
relations for each query to find a satisfying assignment.

10

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

(parent delano herbert)       ; (1), a simple fact

(ancestor delano herbert)     ; (2), from (1) and the 1st ancestor fact

(parent fillmore delano)      ; (3), a simple fact

(ancestor fillmore herbert)   ; (4), from (2), (3), & the 2nd ancestor fact

logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))



Hierarchical Facts

11



Hierarchical Facts

Relations can contain relations in addition to atoms.

11



Hierarchical Facts

Relations can contain relations in addition to atoms.

11

logic> (fact (dog (name abraham) (color white)))



Hierarchical Facts

Relations can contain relations in addition to atoms.

11

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))



Hierarchical Facts

Relations can contain relations in addition to atoms.

11

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))

A

B C

D G

H

F

E



Hierarchical Facts

Relations can contain relations in addition to atoms.

11

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))

Variables can refer to atoms or relations.

A

B C

D G

H

F

E



Hierarchical Facts

Relations can contain relations in addition to atoms.

11

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))

Variables can refer to atoms or relations.

logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

A

B C

D G

H

F

E



Hierarchical Facts

Relations can contain relations in addition to atoms.

11

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))

Variables can refer to atoms or relations.

logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?info))
Success!
info: (color white)

A

B C

D G

H

F

E



Hierarchical Facts

Relations can contain relations in addition to atoms.

11

logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color brown)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color brown)))

Variables can refer to atoms or relations.

logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?info))
Success!
info: (color white)

A

B C

D G

H

F

E



Example: Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

12

A

B C

D G

H

F

E



Example: Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

12

logic> (query (dog (name ?name) (color ?color))

A

B C

D G

H

F

E



Example: Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

12

logic> (query (dog (name ?name) (color ?color))

              (ancestor ?ancestor ?name)

A

B C

D G

H

F

E



Example: Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

12

logic> (query (dog (name ?name) (color ?color))

              (ancestor ?ancestor ?name)

              (dog (name ?ancestor) (color ?color)))

A

B C

D G

H

F

E



Example: Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

12

logic> (query (dog (name ?name) (color ?color))

              (ancestor ?ancestor ?name)

              (dog (name ?ancestor) (color ?color)))

Success!

name: barack    color: tan      ancestor: eisenhower

name: clinton   color: white    ancestor: abraham

name: grover    color: tan      ancestor: eisenhower

name: herbert   color: brown    ancestor: fillmore

A

B C

D G

H

F

E



Example: Appending Lists

13



Example: Appending Lists

Two lists append to form a third list if:

13



Example: Appending Lists

Two lists append to form a third list if:

• The first list is empty and the second and third are the same

13



Example: Appending Lists

Two lists append to form a third list if:

• The first list is empty and the second and third are the same

• The rest of 1 and 2 append to form the rest of 3

13



Example: Appending Lists

Two lists append to form a third list if:

• The first list is empty and the second and third are the same

• The rest of 1 and 2 append to form the rest of 3

13

logic> (fact (append-to-form () ?x ?x))



Example: Appending Lists

Two lists append to form a third list if:

• The first list is empty and the second and third are the same

• The rest of 1 and 2 append to form the rest of 3

13

logic> (fact (append-to-form () ?x ?x))

logic> (fact (append-to-form (?a . ?r) ?y (?a . ?z)) 
             (append-to-form ?r ?y ?z))



Example: Appending Lists

Two lists append to form a third list if:

• The first list is empty and the second and third are the same

• The rest of 1 and 2 append to form the rest of 3

13

logic> (fact (append-to-form () ?x ?x))

logic> (fact (append-to-form (?a . ?r) ?y (?a . ?z)) 
             (append-to-form ?r ?y ?z))

Demo


