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Processing Sequential Data

Many data sets can be viewed and processed sequentially:
The set of all Twitter posts

Votes cast in a presidential election

Sensor readings of an airplane

The set of all positive integers
However, the sequence interface we developed previously does
not always apply.

A sequence has a finite, known length

A sequence support element selection for any element

In most cases, satisfying the sequence interface requires
storing the entire sequence in a computer's memory.

Today: Efficient representations of sequential data



Implicit Sequences

An implicit sequence 1is a representation of sequential data
that does not explicitly store each element.
Example: The range class represents consecutive integers.
The range is represented by two values: start and end.
The length and elements are computed on demand.

Constant space for arbitrarily large sequences.
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The lterator Interface

An iterator is an object that can provide the next element of
a (possibly implicit) sequence.

The iterator interface has two methods:
- __next__(self) returns the next element in the sequence

- _iter__(self) returns an equivalent iterator (Why?)
The next function invokes the __next__ method on its argument.

If there i1s no next element, then the _ next _ method of an
iterator should raise a Stoplteration exception.
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The For Statement

for <name> 1n <expression>:
<suite>

1. Evaluate the header <expression>, which yields an iterable object.

2. For each element in that sequence, in order:

A. Bind <name> to that element in the first frame of the current
environment.

B. Execute the <suite>.

An iterable object has a method __iter__ that returns an iterator.

>>> counts = [1, 2, 3] >>> counts = [1, 2, 3]
>>> for item in counts: >>> items = counts. iter ()
print(item) >>> try:
1 while True:
2 item = items. next ()
3 print(item)
except StopIteration:
pass
1
2



Generators and Generator Functions

A generator is an iterator backed by a generator function.
A generator function is a function that yields values.

When a generator function is called, it returns a generator.

>>> def letters generator():
current = 'a'
while current <= 'd':
yield current
current = chr(ord(current)+1)

>>> for letter in letters generator():
print(letter)
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Streams

A stream 1is a recursive list with an explicit first element
and an implicit rest of the list.

class Stream(object):
"UUA lazily computed recursive list."™"
class empty(object):
def __repr__(self):
return 'Stream.empty’
empty = empty()

def __init__ (self, first, compute_rest=1lambda: empty):
assert callable(compute_rest), 'compute_rest must be callable.'
self.first = first
self._compute_rest = compute_rest
self._rest = None

@property
def rest(self):
"""Return the rest of the stream, computing it if necessary.'""
if self._compute_rest is not None:
self._rest = self._compute_rest()
self._compute_rest = None
return self._rest



Integer Streams

An integer stream 1is a stream of consecutive integers.

An integer stream starting at k consists of k and a function
that returns the integer stream starting at k+1.

def make integer stream(first=1):
"""Return a stream of consecutive integers, starting with first.

>>> s = make integer stream(3)
>>> s.first
3
>>> s.rest.first
4
def compute rest():
return make integer stream(first+1)
return Stream(first, compute rest)



Mapping a Function over a Stream

Mapping a function over a stream applies a function only to
the first element at first, but computes the rest lazily.

def map_stream(fn, s):
"""Map a function fn over the elements of a stream s."""
if s 1s Stream.empty:
return s
def compute_rest():
return map_stream(fn, s.rest)
return Stream(fn(s.first), compute_rest)
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Filtering a Stream

When filtering a stream, processing continues until an element
is kept 1in the output.

def filter_stream(fn, s):
"""Filter stream s with predicate function fn."""
if s i1s Stream.empty:
return s
def compute_rest():
return filter_stream(fn, s.rest)
if fn(s.first):
return Stream(s.first, compute_rest)
else:
return compute_rest()



A Stream of Primes

The stream of integers not divisible by any k <= n 1is:
- The stream of integers not divisible by any k < n,
- Filtered to remove any element divisible by n.

- Called the Sieve of Eratosthenes.

2, 3, %5, 6, 7, 8, % 1g, 11, 12, 13
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