61A Lecture 32

Wednesday, November 14



Processing Sequential Data

Many data sets can be viewed and processed sequentially:
The set of all Twitter posts

Votes cast in a presidential election

Sensor readings of an airplane

The set of all positive integers
However, the sequence interface we developed previously does
not always apply.

A sequence has a finite, known length

A sequence support element selection for any element

In most cases, satisfying the sequence interface requires
storing the entire sequence in a computer's memory.

Today: Efficient representations of sequential data



Implicit Sequences

An implicit sequence 1is a representation of sequential data
that does not explicitly store each element.
Example: The range class represents consecutive integers.
The range is represented by two values: start and end.
The length and elements are computed on demand.

Constant space for arbitrarily large sequences.

Demo



The lterator Interface

An iterator is an object that can provide the next element of
a (possibly implicit) sequence.

The iterator interface has two methods:
- __next__(self) returns the next element in the sequence

- _iter__(self) returns an equivalent iterator (Why?)
The next function invokes the __next__ method on its argument.

If there i1s no next element, then the _ next _ method of an
iterator should raise a Stoplteration exception.

Demo




The For Statement

for <name> 1n <expression>:
<suite>

1. Evaluate the header <expression>, which yields an iterable object.

2. For each element in that sequence, in order:

A. Bind <name> to that element in the first frame of the current
environment.

B. Execute the <suite>.

An iterable object has a method __iter__ that returns an iterator.

>>> counts = [1, 2, 3] >>> counts = [1, 2, 3]
>>> for item in counts: >>> items = counts. iter ()
print(item) >>> try:
1 while True:
2 item = items. next ()
3 print(item)
except StopIteration:
pass
1
2



Generators and Generator Functions

A generator is an iterator backed by a generator function.
A generator function is a function that yields values.

When a generator function is called, it returns a generator.

>>> def letters generator():
current = 'a'
while current <= 'd':
yield current
current = chr(ord(current)+1)

>>> for letter in letters generator():
print(letter)

O N T WD



Streams

A stream 1is a recursive list with an explicit first element
and an implicit rest of the list.

class Stream(object):
"UUA lazily computed recursive list."™"
class empty(object):
def __repr__(self):
return 'Stream.empty’
empty = empty()

def __init__ (self, first, compute_rest=1lambda: empty):
assert callable(compute_rest), 'compute_rest must be callable.'
self.first = first
self._compute_rest = compute_rest
self._rest = None

@property
def rest(self):
"""Return the rest of the stream, computing it if necessary.'""
if self._compute_rest is not None:
self._rest = self._compute_rest()
self._compute_rest = None
return self._rest



Integer Streams

An integer stream 1is a stream of consecutive integers.

An integer stream starting at k consists of k and a function
that returns the integer stream starting at k+1.

def make integer stream(first=1):
"""Return a stream of consecutive integers, starting with first.

>>> s = make integer stream(3)
>>> s.first
3
>>> s.rest.first
4
def compute rest():
return make integer stream(first+1)
return Stream(first, compute rest)



Mapping a Function over a Stream

Mapping a function over a stream applies a function only to
the first element at first, but computes the rest lazily.

def map_stream(fn, s):
"""Map a function fn over the elements of a stream s."""
if s 1s Stream.empty:
return s
def compute_rest():
return map_stream(fn, s.rest)
return Stream(fn(s.first), compute_rest)

Demo



Filtering a Stream

When filtering a stream, processing continues until an element
is kept 1in the output.

def filter_stream(fn, s):
"""Filter stream s with predicate function fn."""
if s i1s Stream.empty:
return s
def compute_rest():
return filter_stream(fn, s.rest)
if fn(s.first):
return Stream(s.first, compute_rest)
else:
return compute_rest()



A Stream of Primes

The stream of integers not divisible by any k <= n 1is:
- The stream of integers not divisible by any k < n,
- Filtered to remove any element divisible by n.

- Called the Sieve of Eratosthenes.

2, 3, %5, 6, 7, 8, % 1g, 11, 12, 13

Demo



