
61A Lecture 32

Wednesday, November 14

Processing Sequential Data

Many data sets can be viewed and processed sequentially:

• The set of all Twitter posts

• Votes cast in a presidential election

• Sensor readings of an airplane

• The set of all positive integers

However, the sequence interface we developed previously does
not always apply.

• A sequence has a finite, known length

• A sequence support element selection for any element

In most cases, satisfying the sequence interface requires
storing the entire sequence in a computer's memory.

Today: Efficient representations of sequential data

2

Implicit Sequences

An implicit sequence is a representation of sequential data
that does not explicitly store each element.

Example: The range class represents consecutive integers.
• The range is represented by two values: start and end.

• The length and elements are computed on demand.

• Constant space for arbitrarily large sequences.

3

Demo

The Iterator Interface

An iterator is an object that can provide the next element of
a (possibly implicit) sequence.

The iterator interface has two methods:

• __next__(self) returns the next element in the sequence

• __iter__(self) returns an equivalent iterator (Why?)

The next function invokes the __next__ method on its argument.

If there is no next element, then the __next__ method of an
iterator should raise a StopIteration exception.

4

Demo

The For Statement

5

for <name> in <expression>:
 <suite>

1. Evaluate the header <expression>, which yields an iterable object.

2. For each element in that sequence, in order:
A. Bind <name> to that element in the first frame of the current

environment.
B. Execute the <suite>.

An iterable object has a method __iter__ that returns an iterator.

>>> counts = [1, 2, 3]
>>> for item in counts:
 print(item)
1
2
3

>>> counts = [1, 2, 3]
>>> items = counts.__iter__()
>>> try:
 while True:
 item = items.__next__()
 print(item)
 except StopIteration:
 pass
1
2
3

Generators and Generator Functions

A generator is an iterator backed by a generator function.

A generator function is a function that yields values.

When a generator function is called, it returns a generator.

6

>>> def letters_generator():
 current = 'a'
 while current <= 'd':
 yield current
 current = chr(ord(current)+1)

>>> for letter in letters_generator():
 print(letter)
a
b
c
d

Streams

A stream is a recursive list with an explicit first element
and an implicit rest of the list.

7

class Stream(object):
 """A lazily computed recursive list."""
 class empty(object):
 def __repr__(self):
 return 'Stream.empty'
 empty = empty()

 def __init__(self, first, compute_rest=lambda: empty):
 assert callable(compute_rest), 'compute_rest must be callable.'
 self.first = first
 self._compute_rest = compute_rest
 self._rest = None

 @property
 def rest(self):
 """Return the rest of the stream, computing it if necessary."""
 if self._compute_rest is not None:
 self._rest = self._compute_rest()
 self._compute_rest = None
 return self._rest

Integer Streams

An integer stream is a stream of consecutive integers.

An integer stream starting at k consists of k and a function
that returns the integer stream starting at k+1.

8

def make_integer_stream(first=1):
 """Return a stream of consecutive integers, starting with first.

 >>> s = make_integer_stream(3)
 >>> s.first
 3
 >>> s.rest.first
 4
 """"
 def compute_rest():
 return make_integer_stream(first+1)
 return Stream(first, compute_rest)

Mapping a Function over a Stream

Mapping a function over a stream applies a function only to
the first element at first, but computes the rest lazily.

9

def map_stream(fn, s):
 """Map a function fn over the elements of a stream s."""
 if s is Stream.empty:
 return s
 def compute_rest():
 return map_stream(fn, s.rest)
 return Stream(fn(s.first), compute_rest)

Demo

Filtering a Stream

When filtering a stream, processing continues until an element
is kept in the output.

10

def filter_stream(fn, s):
 """Filter stream s with predicate function fn."""
 if s is Stream.empty:
 return s
 def compute_rest():
 return filter_stream(fn, s.rest)
 if fn(s.first):
 return Stream(s.first, compute_rest)
 else:
 return compute_rest()

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n,

• Filtered to remove any element divisible by n.

• Called the Sieve of Eratosthenes.

11

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Demo

