
61A Lecture 30

Wednesday, November 7

Functional Programming

All functions are pure functions

No assignment and no mutable data types (except for re-define)

Name-value bindings are permanent

Advantages of functional programming:

• The value of an expression is independent of the order in
which sub-expressions are evaluated

• Sub-expressions can safely be evaluated in parallel or lazily

• Referential transparency: The value of an expression does not
change when we substitute one of its subexpression with the
value of that subexpression.

But... Can we make basic loops efficient?

Yes!

2

⇥(1)

Iteration Versus Recursion in Python

3

Time Space

def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

def exp(b, n):
 total = 1
 for _ in range(n):
 total = total * b
 return total

�(n) �(n)

�(n)

In Python, recursive calls always create new active frames.

Tail Recursion

From the Revised7 Report on the Algorithmic Language Scheme:

4

"Implementations of Scheme are required to be properly
tail-recursive. This allows the execution of an iterative
computation in constant space, even if the iterative
computation is described by a syntactically recursive
procedure."

(define (factorial n k)
 (if (= n 0) k
 (factorial (- n 1)
 (* k n))))

def factorial(n, k):
 while n > 0:
 n, k = n-1, k*n
 return k

(define (factorial n k)
 (if (= n 0) k
 (factorial (- n 1)
 (* k n))))

Tail Calls

A procedure call that has not yet returned is active. Some
procedure calls are tail calls. A Scheme interpreter should
support an unbounded number of active tail calls.

A tail call is a call expression in a tail context:

• The last expression in a lambda expression

• Sub-expressions 2 & 3 in a tail context if expression

• All non-predicate sub-expressions in a tail context cond

• The last sub-expression in a tail context and or or

• The last sub-expression in a tail context begin

5

Example: Length of a List

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s)))))

6

Not a tail context

A call expression is not a tail call if more computation is
still required in the calling procedure.

Linear recursions can often be re-written to use tail calls.

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

 (length-iter (cdr s) (+ 1 n))))

 (length-iter s 0))

Recursive call is a tail call

Eval with Tail Call Optimization

The return value of the tail call is the return value of the
current procedure call.

Therefore, tail calls shouldn't increase the environment size.

In the interpreter, recursive calls to scheme_eval for tail
calls must instead be expressed iteratively.

7

Demo

Logical Special Forms, Revisited

8

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

• Evaluate that sub-expression in place of the whole expression.

do_if_form

scheme_eval

Evaluation of the tail context does not require a recursive call.

E.g., replace (if false 1 (+ 2 3)) with (+ 2 3) and repeat.

Example: Reduce

(define (reduce fn s start)

 (if (null? s) start

 (reduce fn

 (cdr s)

 (fn start (car s)))))

9

Recursive call is a tail call.

Other calls are not; constant space depends on fn.

(reduce * '(3 4 5) 2) 120

(reduce (lambda (x y) (cons y x)) '(3 4 5) '(2)) (5 4 3 2)

Example: Map

(define (map fn s)
 (define (map-iter fn s m)
 (if (null? s) m
 (map-iter fn
 (cdr s)
 (cons (fn (car s)) m))))
 (reverse (map-iter fn s nil)))

(define (reverse s)
 (define (reverse-iter s r)
 (if (null? s) r
 (reverse-iter (cdr s)
 (cons (car s) r))))
 (reverse-iter s nil))

10

An Analogy: Programs Define Machines

Programs specify the logic of a computational device

11

factorial

5 120=

- factorial

*

1

1 1

Interpreters are General Computing Machine

An interpreter can be parameterized to simulate any machine

12

Scheme
Interpreter5 120

(define (factorial n)
 (if (zero? n) 1 (* n (factorial (- n 1)))))

Our Scheme interpreter is a universal machine

A bridge between the data objects that are manipulated by our
programming language and the programming language itself

Internally, it is just a set of manipulation rules

Interpretation in Python

eval: Evaluates an expression in the current environment and
returns the result. Doing so may affect the environment.

exec: Executes a statement in the current environment. Doing
so may affect the environment.

13

os.system('python <file>'): Directs the operating system to
invoke a new instance of the Python interpreter.

Demo

eval('2 + 2')

exec('def square(x): return x * x')

