
61A Lecture 29

Monday, November 5

The Structure of an Interpreter

2

The Structure of an Interpreter

2

Apply

Eval

The Structure of an Interpreter

2

Apply

EvalBase cases:

The Structure of an Interpreter

2

Apply

EvalBase cases:
• Primitive values (numbers)

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:

Base cases:
• Primitive values (numbers)

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions

Base cases:
• Primitive values (numbers)

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)

Base cases:
• Primitive values (numbers)

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)

Base cases:
• Primitive values (numbers)

Base cases:
• Built-in primitive procedures

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined proc's

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined proc's

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined proc's

Requires an
environment
for name
lookup

The Structure of an Interpreter

2

Apply

Eval

Recursive calls:
• Eval(operands) of call expressions
• Apply(operator, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined proc's

Requires an
environment
for name
lookup

Creates new
environments when
applying user-

defined procedures

Scheme Evaluation

3

Scheme Evaluation

The scheme_eval function dispatches on expression form:

3

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

3

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

3

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

(lambda (<formal-parameters>) <body>)

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special
forms are
identified
by the first
list element

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special
forms are
identified
by the first
list element

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special
forms are
identified
by the first
list element

Anything not
a known

special form
is a call
expression

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special
forms are
identified
by the first
list element

Anything not
a known

special form
is a call
expression

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special
forms are
identified
by the first
list element

Anything not
a known

special form
is a call
expression

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating primitives are called atoms in Scheme.

• All other legal expressions are represented as Scheme lists.

3

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special
forms are
identified
by the first
list element

Anything not
a known

special form
is a call
expression

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

Demo

Logical Special Forms

4

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

4

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

4

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

4

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

4

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

4

The value of an if expression is the value of a sub-expression.

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

4

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

4

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

4

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

• Evaluate that sub-expression in place of the whole expression.

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

4

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

• Evaluate that sub-expression in place of the whole expression.

do_if_form

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

4

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

• Evaluate that sub-expression in place of the whole expression.

do_if_form

scheme_eval

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

4

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

• Evaluate that sub-expression in place of the whole expression.

do_if_form

scheme_eval

Demo

Quotation

5

Quotation

The quote special form evaluates to the quoted expression.

5

Quotation

The quote special form evaluates to the quoted expression.

5

(quote <expression>)

Quotation

The quote special form evaluates to the quoted expression.

5

(quote <expression>)

Evaluates to the <expression> itself, not its value!

Quotation

The quote special form evaluates to the quoted expression.

5

(quote <expression>)

Evaluates to the <expression> itself, not its value!

'<expression> is shorthand for (quote <expression>).

Quotation

The quote special form evaluates to the quoted expression.

5

(quote <expression>)

Evaluates to the <expression> itself, not its value!

'<expression> is shorthand for (quote <expression>).

(quote (1 2))

Quotation

The quote special form evaluates to the quoted expression.

5

(quote <expression>)

Evaluates to the <expression> itself, not its value!

'<expression> is shorthand for (quote <expression>).

(quote (1 2))

'(1 2)

Quotation

The quote special form evaluates to the quoted expression.

5

(quote <expression>)

Evaluates to the <expression> itself, not its value!

'<expression> is shorthand for (quote <expression>).

The scheme_read parser converts shorthand to a combination.

(quote (1 2))

'(1 2)

Quotation

The quote special form evaluates to the quoted expression.

5

(quote <expression>)

Evaluates to the <expression> itself, not its value!

'<expression> is shorthand for (quote <expression>).

The scheme_read parser converts shorthand to a combination.

(quote (1 2))

'(1 2)

Demo

Lambda Expressions

6

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

6

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

6

(lambda (<formal-parameters>) <body>)

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

6

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

6

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure(object):

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

6

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure(object):

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

A scheme list of symbols

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

6

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure(object):

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

A scheme list of symbols

A scheme expression

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

6

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure(object):

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

A scheme list of symbols

A scheme expression

A Frame instance

Frames and Environments

7

Frames and Environments

A frame represents an environment by having a parent frame.

7

Frames and Environments

A frame represents an environment by having a parent frame.

7

Frames are Python instances with methods lookup and define.

Frames and Environments

A frame represents an environment by having a parent frame.

7

Frames are Python instances with methods lookup and define.

In Project 4, Frames do not hold return values.

Frames and Environments

A frame represents an environment by having a parent frame.

7

Frames are Python instances with methods lookup and define.

In Project 4, Frames do not hold return values.

g: Global frame

y
z

3
5

Frames and Environments

A frame represents an environment by having a parent frame.

7

Frames are Python instances with methods lookup and define.

In Project 4, Frames do not hold return values.

g: Global frame

y
z

3
5

[parent=g]

x
z

2
4

Frames and Environments

A frame represents an environment by having a parent frame.

7

Frames are Python instances with methods lookup and define.

In Project 4, Frames do not hold return values.

g: Global frame

y
z

3
5

[parent=g]

x
z

2
4

Demo

Define Expressions

8

Define Expressions

Define expressions bind a symbol to a value in the first frame
of the current environment.

8

Define Expressions

Define expressions bind a symbol to a value in the first frame
of the current environment.

8

(define <name> <expression>)

Define Expressions

Define expressions bind a symbol to a value in the first frame
of the current environment.

8

(define <name> <expression>)

Evaluate the <expression>.

Define Expressions

Define expressions bind a symbol to a value in the first frame
of the current environment.

8

(define <name> <expression>)

Evaluate the <expression>.

Bind <name> to the result (define method of the current frame).

Define Expressions

Define expressions bind a symbol to a value in the first frame
of the current environment.

8

(define <name> <expression>)

Evaluate the <expression>.

Bind <name> to the result (define method of the current frame).

(define x 2)

Define Expressions

Define expressions bind a symbol to a value in the first frame
of the current environment.

8

(define <name> <expression>)

Procedure definition is a combination of define and lambda.

Evaluate the <expression>.

Bind <name> to the result (define method of the current frame).

(define x 2)

Define Expressions

Define expressions bind a symbol to a value in the first frame
of the current environment.

8

(define <name> <expression>)

(define (<name> <formal parameters>) <body>)

Procedure definition is a combination of define and lambda.

Evaluate the <expression>.

Bind <name> to the result (define method of the current frame).

(define x 2)

Define Expressions

Define expressions bind a symbol to a value in the first frame
of the current environment.

8

(define <name> <expression>)

(define (<name> <formal parameters>) <body>)

(define <name> (lambda (<formal parameters>) <body>))

Procedure definition is a combination of define and lambda.

Evaluate the <expression>.

Bind <name> to the result (define method of the current frame).

(define x 2)

Applying User-Defined Procedures

9

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

9

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that
starts with this new frame.

9

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that
starts with this new frame.

9

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that
starts with this new frame.

9

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

g: Global frame

f LambdaProcedure instance [parent=g]

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that
starts with this new frame.

9

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

g: Global frame

f LambdaProcedure instance [parent=g]

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that
starts with this new frame.

9

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil

g: Global frame

f LambdaProcedure instance [parent=g]

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that
starts with this new frame.

9

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that
starts with this new frame.

9

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that
starts with this new frame.

9

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

Applying User-Defined Procedures

Create a new frame in which formal parameters are bound to
argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that
starts with this new frame.

9

Demo

(define (f s) (if (null? s) '(3) (cons (car s) (f (cdr s)))))

(f (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

f LambdaProcedure instance [parent=g]

Eval/Apply in Lisp 1.5

10

Eval/Apply in Lisp 1.5

10

Dynamic Scope

11

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in
which a procedure was called.

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in
which a procedure was called.

(define f (lambda (x) (+ x y)))

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in
which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in
which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in
which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in
which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic scope: The parent for f's frame is g's frame.

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in
which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic scope: The parent for f's frame is g's frame.

Error: unknown identifier: y

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in
which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic scope: The parent for f's frame is g's frame.

Error: unknown identifier: y

13

Dynamic Scope

The way in which names are looked up in Scheme and Python is
called lexical scope (or static scope).

11

Lexical scope: The parent of a frame is the environment in
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in
which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic scope: The parent for f's frame is g's frame.

Error: unknown identifier: y

13

mu

Special form to create
dynamically scoped procedures

