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The way in which names are looked up in Scheme and Python is 
called lexical scope (or static scope). 
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Lexical scope: The parent of a frame is the environment in 
which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in 
which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic scope: The parent for f's frame is g's frame.

Error: unknown identifier: y
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mu

Special form to create 
dynamically scoped procedures


