
61A Lecture 27

Wednesday, October 31

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

• Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

2

Machine
language C Python

�f.(�x.f(x x))(�x.f(x x))

f(x) = x2 � 2x + 1

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical
languages (such as programming languages)

3

In computer science, languages can be implemented:

• An interpreter for a programming language is a function that,
when applied to an expression of the language, performs the
actions required to evaluate that expression.

• The semantics and syntax of a language must be specified
precisely in order to build an interpreter.

The Scheme-Syntax Calculator Language

4

> (+ (* 3 5) (- 10 6))
19

> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))
57

A subset of Scheme that includes:

• Number primitives

• Built-in arithmetic operators: +, -, *, /

• Call expressions

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either
 the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

• The * operator returns the product of its arguments

• The / operator returns the real-valued quotient of a dividend
and divisor (i.e., a numerator and denominator)

5

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

Demo (http://inst.eecs.berkeley.edu/~cs61a/fa12/projects/scalc/scheme_reader.py.html)

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

• Primitive expressions are evaluated directly.

• Call expressions are evaluated recursively:
 Evaluate each operand expression
 Collect their values as a list of arguments
 Apply the named operator to the argument list

8

Demo

Applying Operators

Calculator has a fixed set of operators that we can enumerate

9

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 if operator == '+':

 return ...

 if operator == '-':

...

 ...

Dispatch on
operator name

Demo

Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

• Reads an expression from the user,

• Parses the input to build an expression tree,

• Evaluates the expression tree,

• Prints the resulting value of the expression.

10

Demo

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

 ...

 ...

 if operator == '/':

 if len(args) != 2:

 raise TypeError(operator + ' requires exactly 2 arguments')

 ...

Handling Errors

The REPL handles errors by printing informative messages for
the user, rather than crashing.

12

A well-designed REPL should not crash on any input!

Demo

