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In computer science, languages can be implemented:

• An interpreter for a programming language is a function that, 
when applied to an expression of the language, performs the 
actions required to evaluate that expression.

• The semantics and syntax of a language must be specified 
precisely in order to build an interpreter.
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> (+ (* 3 5) (- 10 6))
19

> (+ (* 3
        (+ (* 2 4)
           (+ 3 5)))
     (+ (- 10 7)
        6))
57

A subset of Scheme that includes:

• Number primitives

• Built-in arithmetic operators: +, -, *, /

• Call expressions



Syntax and Semantics of Calculator

5



Syntax and Semantics of Calculator

Expression types:

5



Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list

5



Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

5



Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:

5



Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

5



Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either 

5



Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either 
 the additive inverse of a single argument, or

5



Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either 
 the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

5



Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either 
 the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

• The * operator returns the product of its arguments

5



Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either 
 the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

• The * operator returns the product of its arguments

• The / operator returns the real-valued quotient of a dividend 
and divisor (i.e., a numerator and denominator)
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A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'  
 '      (- 23)' 
 '      (* 4 5.6))'
 '   10)'

Lines forming 
a Scheme 
expression

A number or a Pair with an 
operator as its first element A number

scheme_reader.py scalc.py
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Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an 
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly 
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

Demo (http://inst.eecs.berkeley.edu/~cs61a/fa12/projects/scalc/scheme_reader.py.html)
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executes a corresponding evaluation rule.

• Primitive expressions are evaluated directly.

• Call expressions are evaluated recursively:
 Evaluate each operand expression
 Collect their values as a list of arguments
 Apply the named operator to the argument list
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Read-Eval-Print Loop

The user interface to many programming languages is an 
interactive loop, which

• Reads an expression from the user,

• Parses the input to build an expression tree,

• Evaluates the expression tree,

• Prints the resulting value of the expression.

10

Demo



Raising Application Errors

11



Raising Application Errors

The sub and div operators have restrictions on argument number.

11



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator == '-':



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator == '-':

            if len(args) == 0:



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator == '-':

            if len(args) == 0:

                raise TypeError(operator + ' requires at least 1 argument')



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator == '-':

            if len(args) == 0:

                raise TypeError(operator + ' requires at least 1 argument')

            ...



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator == '-':

            if len(args) == 0:

                raise TypeError(operator + ' requires at least 1 argument')

            ...

        ...



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator == '-':

            if len(args) == 0:

                raise TypeError(operator + ' requires at least 1 argument')

            ...

        ...

        if operator == '/':



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator == '-':

            if len(args) == 0:

                raise TypeError(operator + ' requires at least 1 argument')

            ...

        ...

        if operator == '/':

            if len(args) != 2:



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator == '-':

            if len(args) == 0:

                raise TypeError(operator + ' requires at least 1 argument')

            ...

        ...

        if operator == '/':

            if len(args) != 2:

                raise TypeError(operator + ' requires exactly 2 arguments')



Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

    def calc_apply(operator, args):

        """Apply the named operator to a list of args."""

        ...

        if operator == '-':

            if len(args) == 0:

                raise TypeError(operator + ' requires at least 1 argument')

            ...

        ...

        if operator == '/':

            if len(args) != 2:

                raise TypeError(operator + ' requires exactly 2 arguments')

            ...



Handling Errors

12



Handling Errors

The REPL handles errors by printing informative messages for 
the user, rather than crashing.

12



Handling Errors

The REPL handles errors by printing informative messages for 
the user, rather than crashing.

12

A well-designed REPL should not crash on any input!



Handling Errors

The REPL handles errors by printing informative messages for 
the user, rather than crashing.

12

A well-designed REPL should not crash on any input!

Demo


