
61A Lecture 27

Wednesday, October 31

Programming Languages

2

Programming Languages

Computers have software written in many different languages.

2

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

2

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

2

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

2

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

2

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

2

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

2

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

• Evaluation process is defined in software, not hardware

2

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

• Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

2

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

• Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

2

Machine
language

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

• Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

2

Machine
language C

Programming Languages

Computers have software written in many different languages.

Machine languages: statements can be interpreted by hardware

• All data are represented as sequences of bits

• All statements are primitive instructions

High-level languages: hide concerns about those details

• Primitive data types beyond just bits

• Statements/expressions can be non-primitive (e.g., calls)

• Evaluation process is defined in software, not hardware

High-level languages are built on top of low-level languages

2

Machine
language C Python

Metalinguistic Abstraction

3

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical
languages (such as programming languages)

3

f(x) = x2 � 2x + 1

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical
languages (such as programming languages)

3

�f.(�x.f(x x))(�x.f(x x))

f(x) = x2 � 2x + 1

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical
languages (such as programming languages)

3

�f.(�x.f(x x))(�x.f(x x))

f(x) = x2 � 2x + 1

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical
languages (such as programming languages)

3

In computer science, languages can be implemented:

�f.(�x.f(x x))(�x.f(x x))

f(x) = x2 � 2x + 1

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical
languages (such as programming languages)

3

In computer science, languages can be implemented:

• An interpreter for a programming language is a function that,
when applied to an expression of the language, performs the
actions required to evaluate that expression.

�f.(�x.f(x x))(�x.f(x x))

f(x) = x2 � 2x + 1

Metalinguistic Abstraction

Metalinguistic abstraction: Establishing new technical
languages (such as programming languages)

3

In computer science, languages can be implemented:

• An interpreter for a programming language is a function that,
when applied to an expression of the language, performs the
actions required to evaluate that expression.

• The semantics and syntax of a language must be specified
precisely in order to build an interpreter.

The Scheme-Syntax Calculator Language

4

The Scheme-Syntax Calculator Language

4

A subset of Scheme that includes:

• Number primitives

• Built-in arithmetic operators: +, -, *, /

• Call expressions

The Scheme-Syntax Calculator Language

4

> (+ (* 3 5) (- 10 6))
19

> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))
57

A subset of Scheme that includes:

• Number primitives

• Built-in arithmetic operators: +, -, *, /

• Call expressions

Syntax and Semantics of Calculator

5

Syntax and Semantics of Calculator

Expression types:

5

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list

5

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

5

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:

5

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

5

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either

5

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either
 the additive inverse of a single argument, or

5

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either
 the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

5

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either
 the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

• The * operator returns the product of its arguments

5

Syntax and Semantics of Calculator

Expression types:
• A call expression is a Scheme list
• A primitive expression is an operator symbol or number

Operators:
• The + operator returns the sum of its arguments

• The - operator returns either
 the additive inverse of a single argument, or
 the sum of subsequent arguments subtracted from the first

• The * operator returns the product of its arguments

• The / operator returns the real-valued quotient of a dividend
and divisor (i.e., a numerator and denominator)

5

Expression Trees

6

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

Parser

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

Parser Evaluator

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

Parser Evaluator

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser Evaluator

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser Evaluator

'(+ 2 2)'

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator

'(+ 2 2)'

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil)))

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil)))

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py

Expression Trees

A basic interpreter has two parts: a parser and an evaluator

6

lines Parser expression Evaluator value

'(+ 2 2)' Pair('+', Pair(2, Pair(2, nil))) 4

4
Pair('*', Pair(Pair('+', ...)))

(* (+ 1 (- 23) (* 4 5.6)) 10)
printed as

 '(* (+ 1'
 ' (- 23)'
 ' (* 4 5.6))'
 ' 10)'

Lines forming
a Scheme
expression

A number or a Pair with an
operator as its first element A number

scheme_reader.py scalc.py

Syntactic Analysis

7

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

7

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

7

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

Demo (http://inst.eecs.berkeley.edu/~cs61a/fa12/projects/scalc/scheme_reader.py.html)

Evaluation

8

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

8

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

• Primitive expressions are evaluated directly.

8

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

• Primitive expressions are evaluated directly.

• Call expressions are evaluated recursively:

8

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

• Primitive expressions are evaluated directly.

• Call expressions are evaluated recursively:
 Evaluate each operand expression

8

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

• Primitive expressions are evaluated directly.

• Call expressions are evaluated recursively:
 Evaluate each operand expression
 Collect their values as a list of arguments

8

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

• Primitive expressions are evaluated directly.

• Call expressions are evaluated recursively:
 Evaluate each operand expression
 Collect their values as a list of arguments
 Apply the named operator to the argument list

8

Evaluation

Evaluation discovers the form of an expression and then
executes a corresponding evaluation rule.

• Primitive expressions are evaluated directly.

• Call expressions are evaluated recursively:
 Evaluate each operand expression
 Collect their values as a list of arguments
 Apply the named operator to the argument list

8

Demo

Applying Operators

9

Applying Operators

Calculator has a fixed set of operators that we can enumerate

9

Applying Operators

Calculator has a fixed set of operators that we can enumerate

9

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

Applying Operators

Calculator has a fixed set of operators that we can enumerate

9

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 if operator == '+':

 return ...

Applying Operators

Calculator has a fixed set of operators that we can enumerate

9

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 if operator == '+':

 return ...

Dispatch on
operator name

Applying Operators

Calculator has a fixed set of operators that we can enumerate

9

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 if operator == '+':

 return ...

 if operator == '-':

...

 ...

Dispatch on
operator name

Applying Operators

Calculator has a fixed set of operators that we can enumerate

9

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 if operator == '+':

 return ...

 if operator == '-':

...

 ...

Dispatch on
operator name

Demo

Read-Eval-Print Loop

10

Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

10

Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

• Reads an expression from the user,

10

Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

• Reads an expression from the user,

• Parses the input to build an expression tree,

10

Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

• Reads an expression from the user,

• Parses the input to build an expression tree,

• Evaluates the expression tree,

10

Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

• Reads an expression from the user,

• Parses the input to build an expression tree,

• Evaluates the expression tree,

• Prints the resulting value of the expression.

10

Read-Eval-Print Loop

The user interface to many programming languages is an
interactive loop, which

• Reads an expression from the user,

• Parses the input to build an expression tree,

• Evaluates the expression tree,

• Prints the resulting value of the expression.

10

Demo

Raising Application Errors

11

Raising Application Errors

The sub and div operators have restrictions on argument number.

11

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

 if len(args) == 0:

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

 ...

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

 ...

 ...

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

 ...

 ...

 if operator == '/':

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

 ...

 ...

 if operator == '/':

 if len(args) != 2:

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

 ...

 ...

 if operator == '/':

 if len(args) != 2:

 raise TypeError(operator + ' requires exactly 2 arguments')

Raising Application Errors

The sub and div operators have restrictions on argument number.

Raising exceptions in apply can identify such issues:

11

 def calc_apply(operator, args):

 """Apply the named operator to a list of args."""

 ...

 if operator == '-':

 if len(args) == 0:

 raise TypeError(operator + ' requires at least 1 argument')

 ...

 ...

 if operator == '/':

 if len(args) != 2:

 raise TypeError(operator + ' requires exactly 2 arguments')

 ...

Handling Errors

12

Handling Errors

The REPL handles errors by printing informative messages for
the user, rather than crashing.

12

Handling Errors

The REPL handles errors by printing informative messages for
the user, rather than crashing.

12

A well-designed REPL should not crash on any input!

Handling Errors

The REPL handles errors by printing informative messages for
the user, rather than crashing.

12

A well-designed REPL should not crash on any input!

Demo

