
61A Lecture 26

Monday, October 29

Today's Topic: Handling Errors

Sometimes, computers don't do exactly what we expect

• A function receives unexpected argument types

• Some resource (such as a file) is not available

• A network connection is lost

2

Grace Hopper's Notebook, 1947, Moth found in a Mark II Computer

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

3

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control:

If f calls g and g calls h, exceptions can shift control from
h to f without waiting for g to return.

However, exception handling tends to be slow.

Mastering exceptions:

Assert Statements

Assert statements raise an exception of type AssertionError

4

assert <expression>, <string>

Assertions are designed to be used liberally and then disabled
in "production" systems. "O" stands for optimized.

python3 -O

Whether assertions are enabled is governed by a bool __debug__

Demo

Raise Statements

Exceptions are raised with a raise statement.

5

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are
just instances of classes that inherit from BaseException.

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation

Try Statements

Try statements handle exceptions

6

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first;

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception

Handling Exceptions

Exception handling can prevent a program from terminating

7

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

handling a <class 'ZeroDivisionError'>

>>> x

0

Multiple try statements: Control jumps to the except
suite of the most recent try statement that handles
that type of exception.

Demo

WWPD: What Would Python Do?

How will the Python interpreter respond?

8

 >>> invert_safe(1/0)

 >>> try:
 invert_safe(0)
 except ZeroDivisionError as e:
 print('Handled!')

 >>> inverrrrt_safe(1/0)

def invert(x):
 result = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return result

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

A Scheme list is written as elements in parentheses:

(<element_0> <element_1> ... <element_n>)

Each <element> can be a combination or primitive.

(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))

The task of parsing a language involves coercing a string
representation of an expression to the expression itself.

Parsers must validate that expressions are well-formed.

Reading Scheme Lists

9

A recursive
Scheme list

Demo (http://inst.eecs.berkeley.edu/~cs61a/fa12/projects/scalc/scheme_reader.py.html)

['(+ 1',
 ' (- 23)',
 ' (* 4 5.6))']

Lines Expression

Parsing

A Parser takes a sequence of lines and returns an expression.

10

Lexical
analysis Tokens Syntactic

analysis

['(', '+', 1]
['(', '-', 23, ')']
['(', '*', 4, 5.6, ')', ')']

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))
printed as

• Iterative process

• Checks for malformed tokens

• Determines types of tokens

• Processes one line at a time

• Tree-recursive process

• Balances parentheses

• Returns tree structure

• Processes multiple lines

Recursive Syntactic Analysis

A predictive recursive descent parser inspects only k tokens
to decide how to proceed, for some fixed k.

11

Can English be parsed via predictive recursive descent?

The horse raced past the barn fell.
ridden(that was)

You g
ot

Gardenp
ath'd!

sentence subject

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an
expression, which may be nested.

Each call to scheme_read consumes the input tokens for exactly
one expression.

12

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

Recursive call: scheme_read sub-expressions and combine them

Base case: symbols and numbers

Demo (http://inst.eecs.berkeley.edu/~cs61a/fa12/projects/scalc/scheme_reader.py.html)

