61A Lecture 25

Friday, October 26

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

e Primitive expressions: 2, 3.3, true, + quotient

e Combinations: (quotient 1@ 2). (not true)

Numbers are self-evaluating; symbols are bound to values.

Call expressions have an operator and @ or more operands.

> (quotient 10 2) “quotient” names Scheme’s
5 built-in integer division
> (quotient (+ 8 7) 5) procedure (i.e., function)
3
> (Hr(xr3))

(Fr(x 2 4) Combinations can span

(+ 3 5))) multiple lines
([ﬁx_ 10 7) (spacing doesn’t matter)
6))

Demo

Lambda Expressions
Lambda expressions evaluate to anonymous functions.
(lambda (<formal-parameters>) <body>)

Two equivalent expressions:
(define (plus4 x) (+ x 4))
(define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

(giambda (x y z) (+ x y (square z))ﬁ 123)

Evaluates to the
add-x-&-y-&-z2 procedure

Scheme is a Dialect of Lisp

What are people saying about Lisp?

- "The greatest single programming language ever designed."
—Alan Kay, co-inventor of Smalltalk and OOP

«"The only computer language that is beautiful."

—Neal Stephenson, John's favorite sci-fi author
«"God's programming language."

—Brian Harvey, Berkeley CS instructor extraordinaire

LISP 15 OVER HALFA | | T WONDER IF THECYCLES THESE ARE YOUR

CENTURY QLD AND IT | | WILL CONTINUE FOREVER. FATHER'S PARENTHESES
STILL HAS THIS PERFECT,
TIMELESS AIRABOUTIT.

\—’ﬂ[_/
A FEV CODERS FROMEAH
NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

http://ings. xked mics/lisp_cycl

ELEGANT
WEAPONS

Special Forms

A combination that is not a call expression is a special form:
« If expression: (if <predicate> <consequent> <alternative>)
e And and or: (and <e1> ... <ep>), (or <er> ... <ep>)

* Binding names: (define <name> <expression>)

* New procedures: (define (<name> <formal parameters>) <body>)

> (define pi 3.14) The name “pi” is bound to

> (x pi 2) ;
6.28 3.14 in the global frame
g (deflne (abs x) A procedure is created and
(if (< x 0) Uahoh
(- x) bound to the name “abs
x))
> (abs -3)

3 Demo

Pairs and Lists

In the late 195@0s, computer scientists used confusing names.
- cons: Two-argument procedure that creates a pair

e car: Procedure that returns the first element of a pair
e cdr: Procedure that returns the second element of a pair
e nil: The empty list

They also used a non-obvious notation for recursive lists.

« A (recursive) Scheme list is a pair in which the second element is
nil or a Scheme list.

« Scheme lists are written as space-separated combinations.

« A dotted list has an arbitrary value for the second element of the
last pair. Dotted lists may not be well-formed lists.

> (define x (cons 1 2))

(1.2)

> (car x)<:i: Not a well-formed list!]

1

> (cdr x)

2

> (cons 1 (cons 2 (cons 3 (cons 4 nil))))

(123 4) Demo

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (dgflne b 2) No sign of “a” and “b” in
> (list a b) the resulting value
(12)
Quotation is used to refer to symbols directly in Lisp.
> (list 'a 'b)
(a b) Symbols are now values
> (list 'a b)
(a 2)

Quotation can also be applied to combinations to form lists.

> (car '(a b c))

a
> (cdr '(a b c))
(b c)

Coercing a Sorted List to a Binary Search Tree

[Al2]] e[s [Fle |17

/4\
2 6
1 3 5 7
Divide length n into 3 parts: [(n-1)/2 , 1, (n-1)/2]
Recursively coerce the left part

The next element is the entry

Recursively coerce the right part

The Begin Special Form

(begin <expi> <expz> ... <expn>)

Demo

>

Scheme Lists and Quotation
Dots can be used in a quoted list to specify the second
element of the final pair.

> (cdr (cdr '(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists.

=2
12.3
=2 G)

Ty Y
What is the printed result of evaluating this expression?

> (cdr '((12) . (34 . (5))))
(3 45)

The Let Special Form

B EE R I B O

(define (entry tree) ...)
(define (left-branch tree) ...)
(define (right-branch tree) ...)
(define (make-tree entry left right) ...)
(define (list->tree elements)
(car (partial-tree elements (length elements))))

(define (partial-tree elts n)
(if (= n @)
(cons nil elts)
(let ((left-size (quotient (- n 1) 2)))
(let ((left-result (partial-tree elts left-size)))
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1))))
(let ((this—entry (car non-left-elts))
(right-result (partial-tree (cdr non-left-elts)
right-size)))
(let ((right-tree (car right-result))
(remaining-elts (cdr right-result)))
(cons (make-tree this-entry left-tree right-tree)
remaining-elts))))))))

