61A Lecture 25

Friday, October 26



Scheme is a Dialect of Lisp

What are people saying about Lisp?

- "The greatest single programming language ever designed."
—Alan Kay, co-inventor of Smalltalk and OOP

« "The only computer language that is beautiful.™
—Neal Stephenson, John's favorite sci-fi author

-« "God's programming language."
—Brian Harvey, Berkeley CS instructor extraordinaire

LISP 15 OVER HALT A T WONDER IF THE CYCLES THESE ARE YOUR
CENTURY OLD AND 1T &L CONTINUE FOREVER) - FATHER'S PARENTH

ESES
STILL HAS THIS PERFECT, N ZiA
IRA T. Z2N
| TIMELESS ANB“_T/ /M (\353 @
| A FEW CODERS FROMEAH '

% NEW GENERATION REe-
DISCOVERING THE LISP ARTS.

http://imgs.xkcd.com/comics/lisp_cycles.pn

FOR A MORE... CIVIUZED AGE.




Scheme Fundamentals

Scheme programs consist of expressions, which can be:
e Primitive expressions: 2, 3.3, true. +, quotient

e Combinations: (quotient 10 2). (not true)

Numbers are self-evaluating; symbols are bound to values.

Call expressions have an operator and @ or more operands.

(quotient 10 2) “quotient” names Scheme’s

>
5 built-in integer division
> (quotient (+ 8 7) 5) procedure (i.e., function)
3
> @3 —
Cﬁ:* 2 4) Combinations can span
(+ 3 5))) multiple lines
([%:_ 10 7) (spacing doesn’t matter)

Demo



Special Forms

A combination that is not a call expression is a special form:
« If expression: (if <predicate> <consequent> <alternative>)
e And and or: (and <e1> ... <ep>), (or <e1> ... <ep>)

e Binding names: (define <name> <expression>)

« New procedures: (define (<name> <formal parameters>) <body>)

~
~ (def}ne pi 3.14) The name “pi” is bound to
> (x pi 2) 3.14 in the global frame
6.28 y
> (define (abs x) h
: A procedure 1s created and
(lf (< X 0) u )
(- x) bound to the name “abs
X)) /
> (abs -3)

w

Demo



Lambda Expressions

Lambda expressions evaluate to anonymous functions.

(lambda (<formal-parameters>) <body>) <:(V

Two equivalent expressions:

(define (plus4 x) (+ x 4))

(define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

_____________________________________________________________

..............................................................

Evaluates to the
add-x-&-y-&-z? procedure




Pairs and Lists

In the late 1950s, computer scientists used confusing names.
e cons: Two-argument procedure that creates a pair

e car: Procedure that returns the first element of a pair
e cdr: Procedure that returns the second element of a pair
e nil: The empty list

They also used a non-obvious notation for recursive lists.

« A (recursive) Scheme list is a pair in which the second element is
nil or a Scheme list.

« Scheme lists are written as space-separated combinations.

« A dotted list has an arbitrary value for the second element of the
last pair. Dotted lists may not be well-formed lists.

> (define x (cons 1 2))

(éar X) Not a well-formed list!

(cons } (cons 2 (cons 3 (cons 4 nil)))) Demo



Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

(define a 1)

>
> (dgfine b 2) No sign of “a” and “b” in
?1(;§5t a b) the resulting value

N

Quotation is used to refer to symbols directly in Lisp.

> (list 'a 'b) ( J

(a b) —= L‘ Symbols are now values

> (list 'a b)
(a 2)

Quotation can also be applied to combinations to form lists.

> (car '(a b c))
a

> (cdr '(a b c))
(b c)



Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second
element of the final pair.

> (cdr (cdr '(1 2 . 3)))
3

However, dots appear in the output only of ill-formed lists.

> '(1 3) 1| e——|2]3
( 12 . 3)
( 512 ) (3 4)) 1| e+——|2 | e+—| 3| e—| 4 | e——>|nil

What is the printed result of evaluating this expression?

> (cdr '((12) . (34 . (5))))
(3 4 5)



Coercing a Sorted List to a Binary Search Tree

2/////// \\\\\\\6
/NN

Divide length n into 3 parts: [ (n-1)/2 , 1, (n-1)/2 ]
Recursively coerce the left part
The next element 1s the entry

Recursively coerce the right part



The Let Special Form

1 —— 2 ——> 3 —>| 4 ——> 5 ——> 0O ——>| 7/ o--|-
(deflne (entry tree) ...)
(define (left-branch tree) ...)
(define (right-branch tree) ...)
(define (make-tree entry left right) ...)
(define (list->tree elements)

(car (partial-tree elements (length elements))))

(define (partial-tree elts n)
(if (= n @)
(cons nil elts)
(let ((left-size (quotient (- n 1) 2)))
(let ((left-result (partial-tree elts left-size)))
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1))))
(let ((this—entry (car non-left-elts))
(right-result (partial-tree (cdr non-left-elts)
right-size)))
(let ((right-tree (car right-result))
(remaining-elts (cdr right-result)))
(cons (make-tree this—entry left-tree right-tree)
remaining-elts))))))))



The Begin Special Form

(begin <expi> <expz> ... <expn>)

Demo



