
61A Lecture 24

Friday, October 22

Not on
Midterm 2

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

2

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}

Implementing Sets

The interface for sets

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2
• Intersection: Return a set with any elements in set1 and set2
• Adjunction: Return a set with all elements in s and a value v

3

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Adjunction

1

3
4

2

1

3
4

2

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that
contains no duplicate items

4

 def empty(s):

 return s is Rlist.empty

 def set_contains(s, v):

 if empty(s):

 return False

 elif s.first == v:

 return True

 return set_contains(s.rest, v)

Demo

R(n) = �(n)

k1 · n � R(n) � k2 · n

Review: Order of Growth

For a set operation that takes "linear" time, we say that

5

n: size of the set

R(n): number of steps required to perform the operation

which means that there are positive constants k1 and k2 such that

for sufficiently large values of n.

Demo

�(n)

�(n2)

Sets as Unordered Sequences

6

 def adjoin_set(s, v):

 if set_contains(s, v):

 return s

 return Rlist(v, s)

 def intersect_set(set1, set2):

 f = lambda v: set_contains(set2, v)

 return filter_rlist(set1, f)

 def union_set(set1, set2):

 f = lambda v: not set_contains(set2, v)

 set1_not_set2 = filter_rlist(set1, f)

 return extend_rlist(set1_not_set2, set2)

�(n2)

Time order of growth

The size of
the set

Assume sets are
the same size

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest

7

 def set_contains2(s, v):

 if empty(s) or s.first > v:

 return False

 elif s.first == v:

 return True

 return set_contains2(s.rest, v)

�(n)Order of growth?

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

8

 def intersect_set2(set1, set2):

 if empty(set1) or empty(set2):

 return Rlist.empty

 e1, e2 = set1.first, set2.first

 if e1 == e2:

 rest = intersect_set2(set1.rest, set2.rest)

 return Rlist(e1, rest)

 elif e1 < e2:

 return intersect_set2(set1.rest, set2)

 elif e2 < e1:

 return intersect_set2(set1, set2.rest)

Demo �(n)Order of growth?

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:
• Larger than all entries in its left branch and

• Smaller than all entries in its right branch

9

7

3

1 5

9

11

7

3

1

5 9

11

5

3

1 7

9

11

Membership in Tree Sets

Set membership tests traverse the tree

• The element is either in the left or right sub-branch

• By focusing on one branch, we reduce the set by about half

10

5

3

1 7

9

11

 def set_contains3(s, v):

 if s is None:

 return False

 elif s.entry == v:

 return True

 elif s.entry < v:

 return set_contains3(s.right, v)

 elif s.entry > v:

 return set_contains3(s.left, v)

9

If 9 is in the
set, it is in
this branch

Order of growth?

Adjoining to a Tree Set

11

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

None None

8

None

Stop!

87

8
7

9

11

8

5

3

1 7

9

11

8
Demo

What Did I Leave Out?

Sets as ordered sequences:

• Adjoining an element to a set

• Union of two sets

Sets as binary trees:

• Intersection of two sets

• Union of two sets

That's homework 8!

12

No lecture on Wednesday

Midterm 2 tomorrow, 7pm-9pm

Good luck!

