Not on
Midterm 2

61A Lecture 24

Friday, October 22



Sets

One more built-in Python container type
Set literals are enclosed in braces
Duplicate elements are removed on construction

Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> 5

{1, 2, 3, 4}

>>> 3 1n s

True

>>> len(s)

4

>>> s . union({1, 5})

{1, 2, 3, 4, 5}

>>> s . intersection({6, 5, 4, 3})
{3, 4}



Implementing Sets

The interface for sets
Membership testing: Is a value an element of a set?
Union: Return a set with all elements in setl or set2
Intersection: Return a set with any elements in setl and set2

Adjunction: Return a set with all elements in s and a value v

Union Intersection Adjunction
/—jf———\ /————5—\ /——I———\ /————E—\ /—jf———\
2
4 3 . 3 4 3 . 3 1 3
N N N —
SRR SR SRR
1 2 12
4 53 3 4 3




Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that
contains no duplicate items

def empty(s):
return s is Rlist.empty

def set contains(s, v):
if empty(s):
return False
elif s.first == v:
return True
return set contains(s.rest, v)

Demo



Review: Order of Growth

For a set operation that takes "linear" time, we say that

n: size of the set

R(n): number of steps required to perform the operation

for sufficiently large values of n.

Demo



Sets as Unordered Sequences

Time order of growth
def adjoin_set(s, v): O(n)
7\
if set _contains(s, v): .
The size of
return s the set
return Rlist(v, s)
def intersect_set(setl, set2): O(n?)
A

f = lambda v: set contains(set2, v)
return filter rlist(setl, f) (:

Assume sets are
the same size

def union_set(setl, set2): O (n?)
f = lambda v: not set contains(set2, v)
setl not set2 = filter _rlist(setl, f)
return extend rlist(setl not set?2, set2)



Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with
unique elements ordered from least to greatest

def set contains2(s, v):
if empty(s) or s.first > v:
return False
elif s.first == v:
return True

return set contains2(s.rest, v)

Order of growth? ©O(n)



Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

def intersect set2(setl, set2):
if empty(setl) or empty(set2):
return Rlist.empty
el, e2 = setl.first, set2.first
if el == e2:
rest = intersect set2(setl.rest, set2.rest)
return Rlist(el, rest)
elif el < e2:
return intersect set2(setl.rest, set2)
elif e2 < el:
return intersect set2(setl, set2.rest)

Demo Order of growth? O(n)



Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:
Larger than all entries in its left branch and

Smaller than all entries in its right branch

VANEEYA N\,
1// \\5 \\;1 5// \\9 1// ;// \El
A\

11



Membership in Tree Sets

Set membership tests traverse the tree
- The element is either in the left or right sub-branch

- By focusing on one branch, we reduce the set by about half

def set contains3(s, v): 9

if s is None: 5
return False // \\

elif s.entry == v: 3 {ﬂuug -------
return True // E // \\

elif s.entry < v: 1 i7 11;
return set contains3(s.right, v) " A

elif s.entry > v: If 9 is in the

set, it 1is 1in

return set contains3(s.left, v) this branch

Order of growth?



Adjoining to a Tree Set

8 8 8 8
9 7/ None
/ \ N\
/ / \ 7 11 None None
Right! Left! Right! Stop!
<
/N N\ \ 8
3 ) 7 11 :
/N \
1 11 8

Demo



What Did | Leave Out?

Sets as ordered seqguences:
Adjoining an element to a set

Union of two sets

Sets as binary trees:
Intersection of two sets

Union of two sets

That's homework 8!

No lecture on Wednesday
Midterm 2 tomorrow, 7pm-9pm

Good luck!



