Last day

of Midterm
2 Material

61A Lecture 23

Friday, October 19

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

def __init__ (self, entry, left=None, right=None):

Valid if left and right
are each either None or
a Tree instance

def fib_tree(n):
ifono==1: A valid tree cannot

be a subtree of
itself (no cycles!)

return Tree(0)
if n == 2:

return Tree(1)
left = fib_tree(n-2)
right = fib_tree(n-1)

Demo

return Tree(left.entry + right.entry, left, right)

The Consumption of Space

Which environment frames do we need to keep during evaluation?
Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

- Environments for any statements currently being executed

- Parent environments of functions named in active environments

Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.

fib(6)

/ \

fib(4) fib(5)
/ AN
fib(2) fib(3)
I N\ fib(3) fib(4)
1 fib(1) fib(2) v N 4 N
| | fb(D) fib(2) fib(2) fib(3)
0 1 ‘ ‘ ya AN
0 1 1 fib(1) fib(2)
(/] 1

The Consumption of Time
Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): (Demo) Time (remainders)

factors = 0
for k in range(1, n+1):
if n % k == 0:
factors += 1
return factors

sqrt_n = sqrt(n)
k, factors =1, 0
while k < sqrt_n:

if n %k == 0: [v/n]
factors += 2
k += 1

if kK * k == n:
factors += 1
return factors

Fibonacci Memory Consumption

fib(6)

\

fib(4) fib(5)

1

Assume we have
reached this step

Fibonacci Memory Consumption

Has an active environment
Can be reclaimed
Hasn't yet been created

\

fib(6)

/

fib(4) fib(5)
/ AN
£ib(2) £ib(3)
I N\ fib(3) fib(4)
1 fib(1) fib(2) V N / AN
\ \ fib(1) {fib(2)} fib(2) £ib(3)
0 ! | 5 / N

Assume we have
reached this step

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

Time Space

def fib_iter(n): O(n) o(1)

prev, curr =1, 0
for _ in range(n-1)

prev, curr = curr, prev + curr
return curr

@memo
def fib(n): O(n) O(n)
if n == 1:
return 0
if n ==
return 1
return fib(n-2) + fib(n-1)

Exponentiation

Goal: one more multiplication lets us double the problem size.

def exp(b, n): b — 1 ifn=0
ifn == 0 b-b""1 otherwise
return 1
return b * exp(b, n-1)

def square(x): 1 ifn=0
return x*x bt =< (b2™)2 if nis even
def fast_exp(b, n): b-b" ! if nis odd
if n ==
return 1

ifn%2==20:

return square(fast_exp(b, n//2))
else:

return b * fast_exp(b, n-1)

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are positive constants ki and k2 such that
ki- f(n) < R(n) < kg - f(n)

for sufficiently large values of n.

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time.

def count_factors(n): Time Space

factors = 0 O(n) o(1)
for k in range(1, n+1):
if n % k == 0:
factors += 1
return factors

sqrt_n = sqrt(n)
k, factors =1, 0
while k < sqrt_n: ()(VGE) ()(1)
if n % k == 0:
factors += 2
k += 1
if kK * k == n:
factors += 1
return factors

Exponentiation

Goal: one more multiplication lets us double the problem size.

Time Space

def exp(b, n): O(n) O(n)

if n ==
return 1
return b * exp(b, n-1)

def square(x):
return x*x

def fast_exp(b, n): O(logn) O(logn)
if n == 0:
return 1
ifn%2==20:
return square(fast_exp(b, n//2))
else:
return b * fast_exp(b, n-1)

Comparing orders of growth (n is the problem size)

O(b") / Exponential growth! Recursive fib takes

14+v5
2

O(¢™) steps, where ¢ = ~ 1.61828
Incrementing the problem scales R(n) by a factor.

@(nQ) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

©(n) Linear growth. Resources scale with the problem.

@(logn) Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

O(1) © Constant. The problem size doesn't matter.

