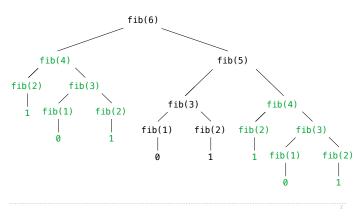


Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.



61A Lecture 23

Friday, October 19

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

class Tree(object): def __init__(self, entry, left=None, right=None): self.entry = entry self.left = left Valid if left and right are each either None or self.right = right a Tree instance def fib_tree(n): A valid tree cannot if n == 1: be a subtree of return Tree(0) itself (no cycles!) if n == 2: return Tree(1) left = fib_tree(n-2) Demo right = fib_tree(n-1) return Tree(left.entry + right.entry, left, right)

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

<pre>def count_factors(n):</pre>	(Demo)	Time (remainders)
<pre>factors = 0 for k in range(1, n+1): if n % k == 0: factors += 1 return factors</pre>		n
<pre>sqrt_n = sqrt(n) k, factors = 1, 0 while k < sqrt_n:</pre>		$\lfloor \sqrt{n} \rfloor$

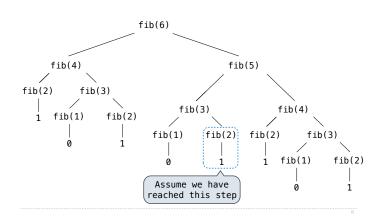
The Consumption of Space

Which environment frames do we need to keep during evaluation? Each step of evaluation has a set of **active** environments. Values and frames in active environments consume memory. Memory used for other values and frames can be reclaimed.

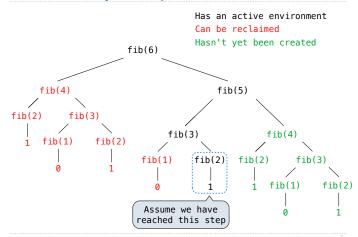
Active environments:

- Environments for any statements currently being executed
- Parent environments of functions named in active environments

Fibonacci Memory Consumption



Fibonacci Memory Consumption



Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

$$R(n) = \Theta(f(n))$$

means that there are positive constants k_1 and k_2 such that

$$k_1 \cdot f(n) \le R(n) \le k_2 \cdot f(n)$$

for sufficiently large values of *n*.

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

	Time	Space
<pre>def fib_iter(n): prev, curr = 1, 0 for _ in range(n-1): prev, curr = curr, prev + curr return curr</pre>	$\Theta(n)$	$\Theta(1)$
<pre>@memo def fib(n): if n == 1: return 0 if n == 2: return 1 return fib(n-2) + fib(n-1)</pre>	$\Theta(n)$	$\Theta(n)$

The Consumption of Time

 $\ensuremath{\mathsf{Implementations}}$ of the same functional abstraction can require different amounts of time.

def	<pre>count_factors(n):</pre>	Time	Space
	<pre>factors = 0 for k in range(1, n+1): if n % k == 0: factors += 1 return factors</pre>	$\Theta(n)$	$\Theta(1)$
	<pre>sqrt_n = sqrt(n) k, factors = 1, 0 while k < sqrt_n: if n % k == 0: factors += 2 k += 1 if k * k == n: factors += 1 return factors</pre>	$\Theta(\sqrt{n})$	$\Theta(1)$

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size.

def	<pre>exp(b, n): if n == 0: return 1 return b * exp(b, n-1)</pre>	$b^n = \begin{cases} 1\\ b \cdot b^{n-1} \end{cases}$	if $n = 0$ otherwise
	<pre>square(x): return x*x fast exp(b, n):</pre>	$b^{n} = \begin{cases} 1 \\ (b^{\frac{1}{2}n})^{2} \\ b \cdot b^{n-1} \end{cases}$	if $n = 0$ if n is even if n is odd
uer	<pre>if n == 0: return 1 if n % 2 == 0: return square(fast_exp(b, else: return b * fast_exp(b, n-1)</pre>	n//2))	

Goal: one more multiplication lets us double the problem size.

		Time	Space
def	<pre>exp(b, n): if n == 0: return 1 return b * exp(b, n-1)</pre>	$\Theta(n)$	$\Theta(n)$
def	square(x): return x*x		
def	<pre>fast_exp(b, n): if n == 0: return 1 if n % 2 == 0: return square(fast_exp(b, n//2)) else: return b * fast_exp(b, n-1)</pre>	$\Theta(\log n)$	$\Theta(\log n)$

Comparing orders of growth (n is the problem size)

$\Theta(b^n)$	Exponential growth! Recursive fib takes
	$\Theta(\phi^n)$ steps, where $\phi=rac{1+\sqrt{5}}{2}pprox 1.61828$
$\Theta(n^6)$	Incrementing the problem scales $R(n)$ by a factor.
$\Theta(n^2)$	Quadratic growth. E.g., operations on all pairs.
	Incrementing \boldsymbol{n} increases $\boldsymbol{R}(\boldsymbol{n})$ by the problem size $\boldsymbol{n}.$
$\begin{array}{c} \Theta(n) \\ \Theta(\sqrt{n}) \cdots \end{array} $	Linear growth. Resources scale with the problem.
$\Theta(\log n)$	Logarithmic growth. These processes scale well.
	Doubling the problem only increments R(n).
$\Theta(1)$	Constant. The problem size doesn't matter.