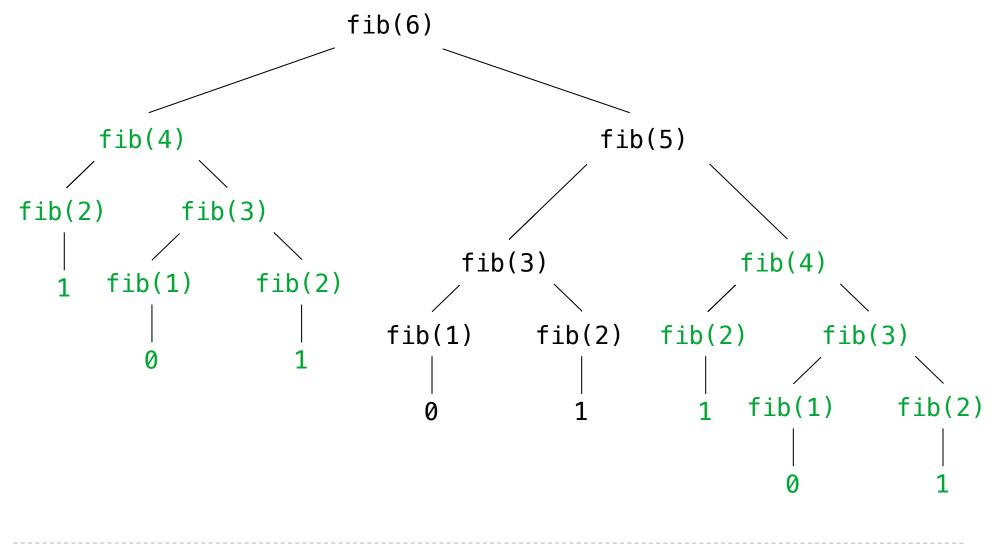
Last day of Midterm 2 Material

61A Lecture 23

Friday, October 19

Trees can have values at their roots as well as their leaves.



Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```
class Tree(object):
    def init (self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
                             Valid if left and right
                             are each either None or
        self.right = right
                                 a Tree instance
def fib_tree(n):
                              A valid tree cannot
    if n == 1:
                                be a subtree of
        return Tree(0)
                              itself (no cycles!)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
                                                   Demo
    right = fib_tree(n-1)
    return Tree(left.entry + right.entry, left, right)
```

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

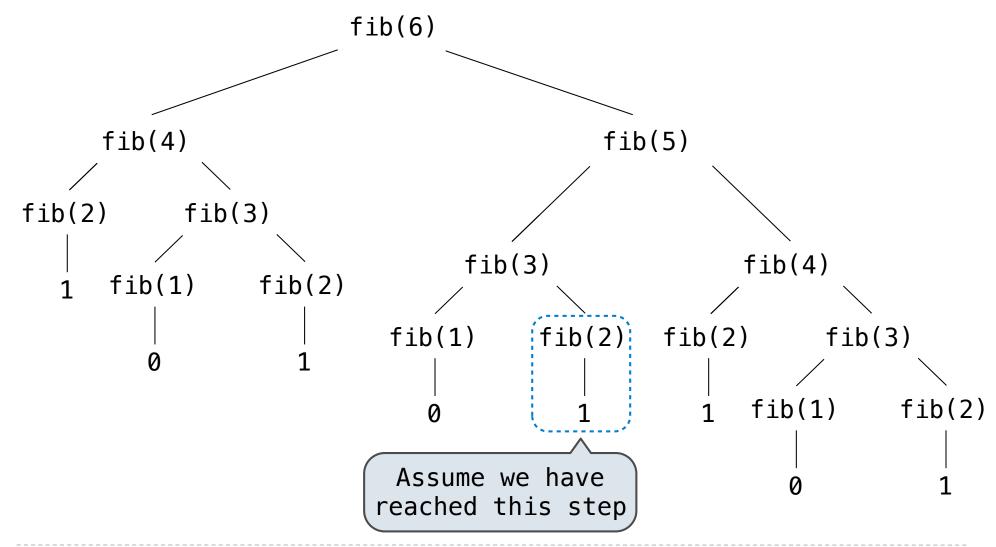
```
Time (remainders)
                                  (Demo)
def count_factors(n):
    factors = \emptyset
    for k in range(1, n+1):
        if n % k == 0:
                                                                 n
           factors += 1
    return factors
    sqrt_n = sqrt(n)
    k, factors = 1, 0
    while k < sqrt_n:</pre>
                                                               |\sqrt{n}|
        if n % k == 0:
             factors += 7
        k += 1
    if k * k == n:
        factors += 1
    return factors
```

Which environment frames do we need to keep during evaluation? Each step of evaluation has a set of **active** environments. Values and frames in active environments consume memory. Memory used for other values and frames can be reclaimed.

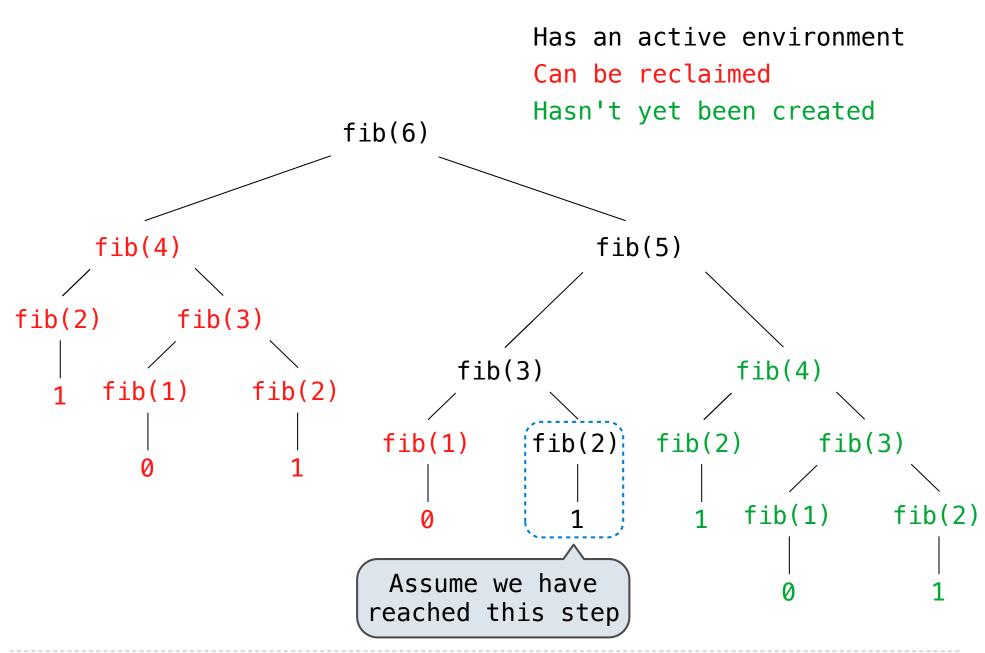
Active environments:

- Environments for any statements currently being executed
- Parent environments of functions named in active environments

Fibonacci Memory Consumption



Fibonacci Memory Consumption



A method for bounding the resources used by a function as the "size" of a problem increases

n: size of the problem

R(**n**): Measurement of some resource used (time or space)

 $R(n) = \Theta(f(n))$

means that there are positive constants k_1 and k_2 such that

$$k_1 \cdot f(n) \le R(n) \le k_2 \cdot f(n)$$

for sufficiently large values of **n**.

Iterative and memoized implementations are not the same.

```
Time
                                                             Space
def fib_iter(n):
                                                 \Theta(n)
                                                              \Theta(1)
    prev, curr = 1, 0
    for _ in range(n-1):
         prev, curr = curr, prev + curr
    return curr
@memo
                                                 \Theta(n)
                                                             \Theta(n)
def fib(n):
    if n == 1:
      return 0
    if n == 2:
         return 1
    return fib(n-2) + fib(n-1)
```

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time.

<pre>def count_factors(n):</pre>	Time	Space
<pre>factors = 0 for k in range(1, n+1): if n % k == 0: factors += 1 return factors</pre>	$\Theta(n)$	$\Theta(1)$
<pre>sqrt_n = sqrt(n) k, factors = 1, 0 while k < sqrt_n: if n % k == 0: factors += 2 k += 1 if k * k == n: factors += 1 return factors</pre>	$\Theta(\sqrt{n})$	$\Theta(1)$

Goal: one more multiplication lets us double the problem size.

```
b^{n} = \begin{cases} 1 & \text{if } n = 0\\ b \cdot b^{n-1} & \text{otherwise} \end{cases}
def exp(b, n):
       if n == 0:
              return 1
       return b * exp(b, n-1)
                                                                b^{n} = \begin{cases} 1 & \text{if } n = 0\\ (b^{\frac{1}{2}n})^{2} & \text{if } n \text{ is even}\\ b \cdot b^{n-1} & \text{if } n \text{ is odd} \end{cases}
def square(x):
       return x*x
def fast_exp(b, n):
       if n == 0:
              return 1
       if n % 2 == 0:
               return square(fast_exp(b, n//2))
       else:
               return b * fast exp(b, n-1)
```

Goal: one more multiplication lets us double the problem size.

```
Time
                                                             Space
def exp(b, n):
                                                \Theta(n)
                                                             \Theta(n)
    if n == 0:
         return 1
    return b * exp(b, n-1)
def square(x):
    return x*x
                                                \Theta(\log n) \qquad \Theta(\log n)
def fast_exp(b, n):
    if n == 0:
        return 1
    if n % 2 == 0:
         return square(fast_exp(b, n//2))
    else:
         return b * fast_exp(b, n-1)
```

Comparing orders of growth (n is the problem size) $\Theta(b^n)$ A Exponential growth! Recursive fib takes $\Theta(\phi^n)$ steps, where $\phi=\frac{1+\sqrt{5}}{2}\approx 1.61828$ $\Theta(n^6) \dots$ Incrementing the problem scales R(n) by a factor. $\Theta(n^2)$ Quadratic growth. E.g., operations on all pairs. Incrementing n increases R(n) by the problem size n. $\Theta(n)$ Linear growth. Resources scale with the problem. $\Theta(\sqrt{n}) \dots$ $\Theta(\log n)$ Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

 $\Theta(1)$ \checkmark Constant. The problem size doesn't matter.