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    class Tree(object):
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            return Tree(0)
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Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

    class Tree(object):

        def __init__(self, entry, left=None, right=None):

            self.entry = entry

            self.left = left

            self.right = right

    def fib_tree(n):

        if n == 1:

            return Tree(0)

        if n == 2:

            return Tree(1)

        left = fib_tree(n-2)

        right = fib_tree(n-1)

        return Tree(left.entry + right.entry, left, right)

Demo

Valid if left and right 
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a Tree instance
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be a subtree of 

itself (no cycles!)
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Implementations of the same functional abstraction can require 
different amounts of time to compute their result.
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Time (remainders)def count_factors(n):

    factors = 0
    for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    return factors

    sqrt_n = sqrt(n)
    k, factors = 1, 0
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The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

5

Active environments: 

• Environments for any statements currently being executed

• Parent environments of functions named in active environments
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Order of Growth

A method for bounding the resources used by a function as the 
"size" of a problem increases
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n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

for sufficiently large values of n.
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    def exp(b, n):
        if n == 0:
            return 1
        return b * exp(b, n-1)

    def square(x):
        return x*x

    def fast_exp(b, n):
        if n == 0:
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Exponential growth!  Recursive fib takes 

�(�n) � =
1 +

�
5

2
� 1.61828steps, where 

Incrementing the problem scales R(n) by a factor.

Linear growth.  Resources scale with the problem.

Quadratic growth.  E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.



�(bn)

�(n)

�(log n)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth!  Recursive fib takes 

�(�n) � =
1 +

�
5

2
� 1.61828steps, where 

Incrementing the problem scales R(n) by a factor.

Linear growth.  Resources scale with the problem.

Quadratic growth.  E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.



�(bn)

�(n)

�(log n)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth!  Recursive fib takes 

�(�n) � =
1 +

�
5

2
� 1.61828steps, where 

Incrementing the problem scales R(n) by a factor.

Linear growth.  Resources scale with the problem.

Logarithmic growth. These processes scale well. 

Quadratic growth.  E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.



�(bn)

�(n)

�(log n)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth!  Recursive fib takes 

�(�n) � =
1 +

�
5

2
� 1.61828steps, where 

Incrementing the problem scales R(n) by a factor.
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Constant. The problem size doesn't matter.
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Incrementing n increases R(n) by the problem size n.
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