
61A Lecture 23

Friday, October 19

Last day
of Midterm
2 Material

Trees with Internal Node Values

2

Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.

2

Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.

2

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right
Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

 right = fib_tree(n-1)

Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

 right = fib_tree(n-1)

 return Tree(left.entry + right.entry, left, right)

Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

3

 class Tree(object):

 def __init__(self, entry, left=None, right=None):

 self.entry = entry

 self.left = left

 self.right = right

 def fib_tree(n):

 if n == 1:

 return Tree(0)

 if n == 2:

 return Tree(1)

 left = fib_tree(n-2)

 right = fib_tree(n-1)

 return Tree(left.entry + right.entry, left, right)

Demo

Valid if left and right
are each either None or

a Tree instance

A valid tree cannot
be a subtree of

itself (no cycles!)

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

4

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

4

def count_factors(n):

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

4

def count_factors(n): (Demo)

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

4

Time (remainders)def count_factors(n): (Demo)

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

4

Time (remainders)def count_factors(n):

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors

(Demo)

n

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

4

Time (remainders)def count_factors(n):

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors

(Demo)

n

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

4

Time (remainders)def count_factors(n):

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors

(Demo)

n

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

4

Time (remainders)def count_factors(n):

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors

 sqrt_n = sqrt(n)
 k, factors = 1, 0
 while k < sqrt_n:
 if n % k == 0:
 factors += 2
 k += 1
 if k * k == n:
 factors += 1
 return factors

(Demo)

n

b
p
nc

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

4

Time (remainders)def count_factors(n):

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors

 sqrt_n = sqrt(n)
 k, factors = 1, 0
 while k < sqrt_n:
 if n % k == 0:
 factors += 2
 k += 1
 if k * k == n:
 factors += 1
 return factors

(Demo)

The Consumption of Space

5

The Consumption of Space

Which environment frames do we need to keep during evaluation?

5

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

5

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

5

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

5

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

5

Active environments:

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

5

Active environments:

• Environments for any statements currently being executed

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

5

Active environments:

• Environments for any statements currently being executed

• Parent environments of functions named in active environments

Fibonacci Memory Consumption

6

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Fibonacci Memory Consumption

6

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Fibonacci Memory Consumption

7

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Fibonacci Memory Consumption

7

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Has an active environment

Fibonacci Memory Consumption

7

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Has an active environment
Can be reclaimed

Fibonacci Memory Consumption

7

fib(6)

fib(5)

fib(3)

fib(2)

1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(1)

0

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Assume we have
reached this step

Has an active environment
Can be reclaimed
Hasn't yet been created

Order of Growth

8

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

8

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

8

n: size of the problem

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

8

n: size of the problem

R(n): Measurement of some resource used (time or space)

R(n) = �(f(n))

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

8

n: size of the problem

R(n): Measurement of some resource used (time or space)

R(n) = �(f(n))

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

8

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

8

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

Order of Growth

A method for bounding the resources used by a function as the
"size" of a problem increases

8

n: size of the problem

R(n): Measurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

for sufficiently large values of n.

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

9

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

9

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

�(n)

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

9

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

�(n) �(1)

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

9

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

�(n)

�(n)

�(1)

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

9

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time Space

�(n)

�(n) �(n)

�(1)

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time.

10

def count_factors(n):

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors

 sqrt_n = sqrt(n)
 k, factors = 1, 0
 while k < sqrt_n:
 if n % k == 0:
 factors += 2
 k += 1
 if k * k == n:
 factors += 1
 return factors

Time Space

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time.

10

def count_factors(n):

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors

 sqrt_n = sqrt(n)
 k, factors = 1, 0
 while k < sqrt_n:
 if n % k == 0:
 factors += 2
 k += 1
 if k * k == n:
 factors += 1
 return factors

Time Space

�(n) �(1)

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time.

10

def count_factors(n):

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors

 sqrt_n = sqrt(n)
 k, factors = 1, 0
 while k < sqrt_n:
 if n % k == 0:
 factors += 2
 k += 1
 if k * k == n:
 factors += 1
 return factors

Time Space

�(n) �(1)

⇥(
p
n) �(1)

Exponentiation

11

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

bn =

�
1 if n = 0

b · bn�1 otherwise

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return square(fast_exp(b, n//2))

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size.

11

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

Exponentiation

Goal: one more multiplication lets us double the problem size.

12

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

Time Space

Exponentiation

Goal: one more multiplication lets us double the problem size.

12

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

Time Space

�(n) �(n)

Exponentiation

Goal: one more multiplication lets us double the problem size.

12

 def exp(b, n):
 if n == 0:
 return 1
 return b * exp(b, n-1)

 def square(x):
 return x*x

 def fast_exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return square(fast_exp(b, n//2))
 else:
 return b * fast_exp(b, n-1)

Time Space

�(n) �(n)

�(log n) �(log n)

Comparing orders of growth (n is the problem size)

13

�(bn)

Comparing orders of growth (n is the problem size)

13

�(bn)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

�(bn)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

�(bn)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

�(bn)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

�(bn)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

�(bn)

�(n)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

�(bn)

�(n)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

�(bn)

�(n)

�(log n)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

�(bn)

�(n)

�(log n)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

�(bn)

�(n)

�(log n)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

⇥(n6)

�(bn)

�(n)

�(log n)

�(1)

⇥(n2)

Comparing orders of growth (n is the problem size)

13

Exponential growth! Recursive fib takes

�(�n) � =
1 +

�
5

2
� 1.61828steps, where

Incrementing the problem scales R(n) by a factor.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

⇥(
p
n)

⇥(n6)

