```
    Last day
of Midterm
2 Material
```


61A Lecture 23

Friday, October 19

Trees with Internal Node Values

Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.

Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):
def __init__(self, entry, left=None, right=None):

A valid tree cannot be a subtree of itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

```
    def ___init__(self, entry, left=None, right=None):
    self.entry = entry
```

A valid tree cannot be a subtree of itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

```
    def __init__(self, entry, left=None, right=None):
    self.entry = entry
    self.left = left
```

A valid tree cannot be a subtree of itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

```
    def ___init__(self, entry, left=None, right=None):
    self.entry = entry
    self.left = left
    self.right = right
```

A valid tree cannot be a subtree of itself (no cycles!)

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

\qquad init \qquad (self, entry, left=None, right=None): self.entry = entry self.left = left Valid if left and right \qquad are each either None or a Tree instance fib_tree(n): A valid tree cannot be a subtree of itself (no cycles!)	

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.
class Tree(object):

Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left Valid if left and right
        self.right = right
        are each either None or
        a Tree instance
    A valid tree cannot
        be a subtree of
    itself (no cycles!)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
    right = fib_tree(n-1)
    return Tree(left.entry + right.entry, left, right)
```


Trees with Internal Node Values (Entries)

Trees need not only have values at their leaves.

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left Valid if left and right
        self.right = right
        are each either None or
        a Tree instance
def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
    right = fib_tree(n-1)
    return Tree(left.entry + right.entry, left, right)
```


The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result. def count_factors(n):

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.
def count_factors(n):
(Demo)

The Consumption of Time

Implementations of the same functional abstraction can require
different amounts of time to compute their result.
def count_factors(n):
(Demo) Time (remainders)

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```
def count_factors(n):
```

(Demo)
Time (remainders)

```
factors = 0
for \(k\) in range(1, \(n+1\) ):
        if \(\mathrm{n} \% \mathrm{k}=0\) :
            factors += 1
    return factors
```


The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```
def count_factors(n):
```

(Demo)
Time (remainders)

```
factors = 0
for k in range(1, n+1):
        if n % k == 0:
            factors += 1
    return factors
```


The Consumption of Time

```
Implementations of the same functional abstraction can require
different amounts of time to compute their result.
def count_factors(n):
(Demo)
Time (remainders)
```

```
factors = 0
```

factors = 0
for k in range(1, n+1):
for k in range(1, n+1):
if n % k == 0:
if n % k == 0:
factors += 1
factors += 1
return factors

```
    return factors
```


The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```
def count_factors(n):
```

(Demo)
Time (remainders)

```
factors = 0
for k in range(1, n+1):
        if n % k == 0:
        factors += 1
    return factors
    sqrt_n = sqrt(n)
    k, factors = 1, 0
    while k < sqrt_n:
    if n % k == 0:
        factors += 2
        k += 1
    if k * k == n:
        factors += 1
    return factors
```


The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

```
def count_factors(n):
```

(Demo)
Time (remainders)

```
factors = 0
for k in range(1, n+1):
        if n % k == 0:
        factors += 1
    return factors
    sqrt_n = sqrt(n)
    k, factors = 1, 0
    while k < sqrt_n:
    if n % k == 0:
        factors += 2
        k += 1
    if k * k == n:
        factors += 1
    return factors
```

The Consumption of Space

The Consumption of Space

Which environment frames do we need to keep during evaluation?

The Consumption of Space

Which environment frames do we need to keep during evaluation?
Each step of evaluation has a set of active environments.

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

The Consumption of Space

Which environment frames do we need to keep during evaluation?
Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

- Environments for any statements currently being executed

The Consumption of Space

Which environment frames do we need to keep during evaluation?
Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.
Memory used for other values and frames can be reclaimed.

Active environments:

- Environments for any statements currently being executed
- Parent environments of functions named in active environments

Fibonacci Memory Consumption

Fibonacci Memory Consumption

Fibonacci Memory Consumption

Fibonacci Memory Consumption

Has an active environment

Fibonacci Memory Consumption

Fibonacci Memory Consumption

Order of Growth

Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases

Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases
\boldsymbol{n} : size of the problem

Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases
n : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$: Measurement of some resource used (time or space)

Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases
n : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$: Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases
n : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$: Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants k_{1} and k_{2} such that

Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases
n : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$: Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants k_{1} and k_{2} such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

Order of Growth

A method for bounding the resources used by a function as the "size" of a problem increases
n : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$: Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants k_{1} and k_{2} such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

for sufficiently large values of \boldsymbol{n}.

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```
```

def fib_iter(n):

```
```

def fib_iter(n):
prev, curr = 1, 0
prev, curr = 1, 0
for \quad in range $(\mathrm{n}-1)$:
for \quad in range $(\mathrm{n}-1)$:
for - in range(n-1):
for - in range(n-1):
return curr

```
    return curr
```

```
@memo
```

@memo
def fib(n):
def fib(n):
if n == 1:
if n == 1:
return 0
return 0
if n == 2:
if n == 2:
return 1
return 1
return fib(n-2) + fib(n-1)

```
```

 return fib(n-2) + fib(n-1)
    ```
```

Space

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

```
def fib_iter(n):
    prev, curr = 1, 0
    for _ in range (n-1):
        prev, curr \(=\) curr, prev + curr
    return curr
```

@memo

```
@memo
def fib(n):
def fib(n):
    if n == 1:
    if n == 1:
        return 0
        return 0
    if n == 2:
    if n == 2:
        return 1
        return 1
    return fib(n-2) + fib(n-1)
```

```
    return fib(n-2) + fib(n-1)
```

```
Time Space
\[
\Theta(n)
\]

\section*{Iteration vs Memoized Tree Recursion}

Iterative and memoized implementations are not the same.
```

Time Space
\Theta(n)\quad\Theta(1)

```
```

@memo

```
@memo
def fib(n):
def fib(n):
    if n == 1:
    if n == 1:
        return 0
        return 0
    if n == 2:
    if n == 2:
        return 1
        return 1
    return fib(n-2) + fib(n-1)
```

 return fib(n-2) + fib(n-1)
    ```

\section*{Iteration vs Memoized Tree Recursion}

Iterative and memoized implementations are not the same.
```

Time Space
\Theta(n)
\Theta(1)
@memo
def fib(n):
\Theta(n)
if n == 1:
return 0
if n == 2:
return 1
return fib(n-2) + fib(n-1)

```

\section*{Iteration vs Memoized Tree Recursion}

Iterative and memoized implementations are not the same.
```

Time Space
def fib_iter(n):
prev, curr = 1, 0
for _ in range(n-1):
prev, curr = curr, prev + curr
return curr
@memo
def fib(n):
if n == 1:
return 0
if n == 2:
return 1
return fib(n-2) + fib(n-1)
\Theta(n)\quad\Theta(n)

```

\section*{The Consumption of Time}

Implementations of the same functional abstraction can require different amounts of time.
```

def count_factors(n):

```
```

 factors = 0
 for k in range(1, n+1):
 if n % k == 0:
 factors += 1
 return factors
    ```
sqrt_n = sqrt(n)
k , factors \(=1,0\)
while k < sqrt_n:
    if \(\mathrm{n} \% \mathrm{k}==0\) :
            factors += 2
        k += 1
    if \(\mathrm{k} * \mathrm{k}=\mathrm{n}\) :
        factors += 1
    return factors

\section*{The Consumption of Time}

Implementations of the same functional abstraction can require different amounts of time.
```

def count_factors(n):

```
```

```
factors = 0
```

```
factors = 0
for k in range(1, n+1):
for k in range(1, n+1):
        if n % k == 0:
        if n % k == 0:
        factors += 1
        factors += 1
    return factors
```

```
    return factors
```

```
sqrt_n = sqrt(n)
k , factors \(=1,0\)
while k < sqrt_n:
    if \(\mathrm{n} \% \mathrm{k}==0\) :
        factors += 2
        k += 1
    if \(\mathrm{k} * \mathrm{k}==\mathrm{n}\) :
        factors += 1
    return factors
k, factors 1,

Time Space
\(\Theta(n)\)

\section*{The Consumption of Time}

Implementations of the same functional abstraction can require different amounts of time.
```

def count_factors(n):

```
```

factors = 0
for k in range(1, n+1):
if n % k == 0:
factors += 1
return factors

```
```

sqrt_n = sqrt(n)
k, factors = 1, 0
while k < sqrt_n:
if n % k == 0:
factors += 2
k += 1
if k * k == n:
factors += 1
return factors

```

\section*{Exponentiation}

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
```

def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)

```

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
```

def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)

```
        \(b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}\)

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
```

def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)

```
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
\]
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{1}{2} n}\right)^{2} & \text { if } n \text { is even } \\ b \cdot b^{n-1} & \text { if } n \text { is odd }\end{cases}
\]

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
```

def exp(b, n):
if n == 0:
return 1
def square(x):
return x*x
def square(x): return x *x

```
    return b * \(\exp (b, n-1)\)
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
\]
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{1}{2} n}\right)^{2} & \text { if } n \text { is even } \\ b \cdot b^{n-1} & \text { if } n \text { is odd }\end{cases}
\]

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
```

def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)
def square(x):
return x*x
def fast_exp(b, n):

```
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
\]
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{1}{2} n}\right)^{2} & \text { if } n \text { is even } \\ b \cdot b^{n-1} & \text { if } n \text { is odd }\end{cases}
\]

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
```

def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)
def square(x):
return x*x
def fast_exp(b, n):
if n == 0:
return 1

```
\[
b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \cdot b^{n-1} & \text { otherwise }\end{cases}
\]
    \(b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{1}{2} n}\right)^{2} & \text { if } n \text { is even } \\ b \cdot b^{n-1} & \text { if } n \text { is odd }\end{cases}\)

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
```

def exp(b, n):
if n == 0:
return 1
b}={\begin{array}{ll}{1}\&{\mathrm{ if }n=0}
{b\cdot\mp@subsup{b}{}{n-1}}\&{\mathrm{ otherwise}}
return b * exp(b, n-1)
def square(x):
return x*x
def fast_exp(b, n):
b}={\begin{array}{ll}{1}\&{\mathrm{ if }n=0}
{(\mp@subsup{b}{}{\frac{1}{2}n}\mp@subsup{)}{}{2}}\&{\mathrm{ if }n\mathrm{ is even }}
{b\cdot\mp@subsup{b}{}{n-1}}\&{\mathrm{ if }n\mathrm{ is odd }}
if n == 0:
return 1
if n % 2 == 0:
return square(fast_exp(b, n//2))

```

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
```

def exp(b, n):
if n == 0:
return 1
b}={\begin{array}{ll}{1}\&{\mathrm{ if }n=0}
{b\cdot\mp@subsup{b}{}{n-1}}\&{\mathrm{ otherwise}}
return b * exp(b, n-1)
def square(x):
return x*x
def fast_exp(b, n):
b}={\begin{array}{ll}{1}\&{\mathrm{ if }n=0}
{(\mp@subsup{b}{}{\frac{1}{2}n}\mp@subsup{)}{}{2}}\&{\mathrm{ if }n\mathrm{ is even }}
{b\cdot\mp@subsup{b}{}{n-1}}\&{\mathrm{ if }n\mathrm{ is odd }}
if n == 0:
return 1
if n % 2 == 0:
return square(fast_exp(b, n//2))
else:
return b * fast_exp(b, n-1)

```

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size. Time Space
```

def exp(b, n):
if n == 0:
return 1
return b * }\operatorname{exp(b, n-1)
def square(x):
return x*x
def fast_exp(b, n):
if n == 0:
return 1
if n % 2 == 0:
return square(fast_exp(b, n//2))
else:
return b * fast_exp(b, n-1)

```

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.
Time Space
```

def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)
def square(x):
return x*x
def fast_exp(b, n):
if n == 0:
return 1
if n % 2 == 0:
return square(fast_exp(b, n//2))
else:
return b * fast_exp(b, n-1)

```

\section*{Exponentiation}

Goal: one more multiplication lets us double the problem size.

Time Space
```

def exp(b, n):
if n == 0:
return 1
return b * exp(b, n-1)

```
def square(x):
    return \(x^{*} x\)
def fast_exp(b, n):
        if \(n==0\) :
        return 1
    if \(n\) \% 2 == 0:
        return square(fast_exp(b, n//2))
    else:
        return b * fast_exp(b, n-1)
\(\Theta(n) \quad \Theta(n)\)
\(\Theta(\log n) \quad \Theta(\log n)\)

Comparing orders of growth ( n is the problem size)

Comparing orders of growth ( n is the problem size)
\(\Theta\left(b^{n}\right)\)

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right)\)

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right)\) Quadratic growth. E.g., operations on all pairs.

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right) \quad\) Quadratic growth. E.g., operations on all pairs. Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right) \quad\) Quadratic growth. E.g., operations on all pairs. Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n)\)

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right) \quad\) Quadratic growth. E.g., operations on all pairs. Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n)\) Linear growth. Resources scale with the problem.

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right) \quad\) Quadratic growth. E.g., operations on all pairs. Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n)\) Linear growth. Resources scale with the problem.
\(\Theta(\log n)\)

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right) \quad\) Quadratic growth. E.g., operations on all pairs.
Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n)\) Linear growth. Resources scale with the problem.
\(\Theta(\log n) \quad\) Logarithmic growth. These processes scale well.

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right) \quad\) Quadratic growth. E.g., operations on all pairs.
Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n)\) Linear growth. Resources scale with the problem.
\(\Theta(\log n) \quad\) Logarithmic growth. These processes scale well.
Doubling the problem only increments \(R(n)\).

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right) \quad\) Quadratic growth. E.g., operations on all pairs.
Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n)\) Linear growth. Resources scale with the problem.
\(\Theta(\log n) \quad\) Logarithmic growth. These processes scale well. Doubling the problem only increments \(\mathrm{R}(\mathrm{n})\).

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right) \quad\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right) \quad\) Quadratic growth. E.g., operations on all pairs.
Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n)\) Linear growth. Resources scale with the problem.
\(\Theta(\log n) \quad\) Logarithmic growth. These processes scale well.
Doubling the problem only increments \(R(n)\).
\(\Theta(1)\) Constant. The problem size doesn't matter.

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right)\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right) \quad\) Quadratic growth. E.g., operations on all pairs.
Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n)\) Linear growth. Resources scale with the problem.
\(\Theta(\log n) \quad\) Logarithmic growth. These processes scale well.
Doubling the problem only increments \(R(n)\).
\(\Theta(1)\) Constant. The problem size doesn't matter.

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right)\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
\(\Theta\left(n^{6}\right)\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right)\) Quadratic growth. E.g., operations on all pairs.
Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n) \quad\) Linear growth. Resources scale with the problem.
\(\Theta(\log n) \quad\) Logarithmic growth. These processes scale well.
Doubling the problem only increments \(\mathrm{R}(\mathrm{n})\).
\(\Theta(1)\) Constant. The problem size doesn't matter.

\section*{Comparing orders of growth ( n is the problem size)}
\(\Theta\left(b^{n}\right)\) Exponential growth! Recursive fib takes
\(\Theta\left(\phi^{n}\right)\) steps, where \(\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828\)
\(\Theta\left(n^{6}\right) \cdots \cdots \cdots\)
Incrementing the problem scales \(R(n)\) by a factor.
\(\Theta\left(n^{2}\right)\) Quadratic growth. E.g., operations on all pairs.
Incrementing \(n\) increases \(R(n)\) by the problem size \(n\).
\(\Theta(n)\) Linear growth. Resources scale with the problem.
\(\Theta(\sqrt{n}) \ldots\)
\(\Theta(\log n) \quad\) Logarithmic growth. These processes scale well.
Doubling the problem only increments \(\mathrm{R}(\mathrm{n})\).
\(\Theta(1)\) Constant. The problem size doesn't matter.```

