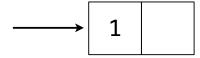
61A Lecture 22

Wednesday, October 17

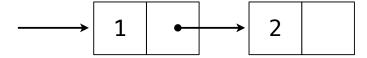
A tuple can contain another tuple as an element.

A tuple can contain another tuple as an element.

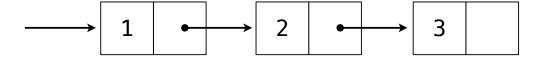

Pairs are sufficient to represent sequences.

A tuple can contain another tuple as an element.

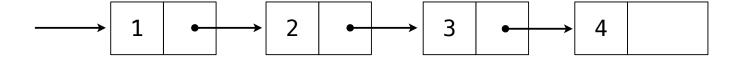
Pairs are sufficient to represent sequences.


A tuple can contain another tuple as an element.

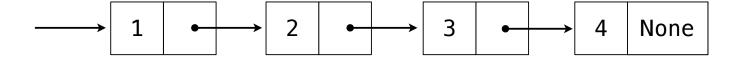
Pairs are sufficient to represent sequences.


A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

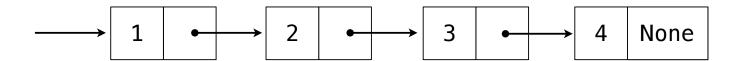

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.


A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

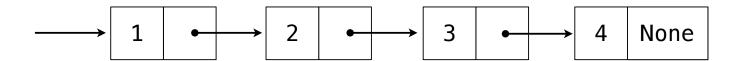
A tuple can contain another tuple as an element.


Pairs are sufficient to represent sequences.

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

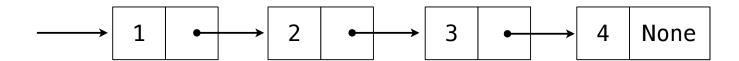


Recursive lists are recursive: the rest of the list is a list.

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:


Recursive lists are recursive: the rest of the list is a list.

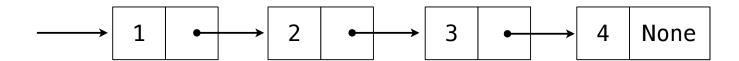
Nested Tuples (old):

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.


Nested Tuples (old): (1, (2, (3, (4, None))))

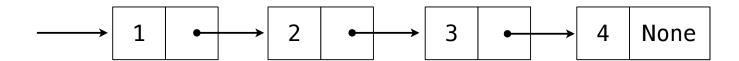
2

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.


Nested Tuples (old): (1, (2, (3, (4, None)))) Demo

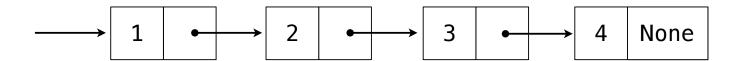
2

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.


Nested Tuples (old): (1, (2, (3, (4, None)))) Demo

Rlist class (new):

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.

Nested Tuples (old): (1, (2, (3, (4, None)))) Demo

Rlist class (new): Rlist(1, Rlist(2, Rlist(3, Rlist(4))))

class Rlist(object):

```
class Rlist(object):
    class EmptyList(object):
        def __len__(self):
        return 0

empty = EmptyList()
```

```
class Rlist(object):
    class EmptyList(object):
        def __len__(self):
            return 0

empty = EmptyList()

def __init__(self, first, rest=empty):
        self.first = first
        self.rest = rest
```

```
class Rlist(object):
    class EmptyList(object):
        def __len__(self):
            return 0

empty = EmptyList()

def __init__(self, first, rest=empty):
        self.first = first
        self.rest = rest
```

Methods can be recursive as well!

```
class Rlist(object):
    class EmptyList(object):
        def __len__(self):
            return 0

empty = EmptyList()

def __init__(self, first, rest=empty):
        self.first = first
        self.rest = rest
```

Methods can be recursive as well!

```
class Rlist(object):
    class EmptyList(object):
        def __len__(self):
            return 0

empty = EmptyList()

def __init__(self, first, rest=empty):
        self.first = first
        self.rest = rest

def __len__(self):
    return 1 + len(self.rest)
```

Methods can be recursive as well!

This part was all in Homework 6

is recursive

3

Methods can be recursive as well!

Methods can be recursive as well!

```
fclass Rlist(object):
    class EmptyList(object):
        def len (self):
                              There's the
            return 0
                              base case!
    empty = EmptyList()
    def __init__(self, first, rest=empty):
        self.first = first
        self.rest = rest
   def len (self):
                                     Yes, this call
        return 1 + len(self.rest)
                                      is recursive
    def getitem (self, i):
        if i == 0:
            return self.first
        return self.rest[i-1]
```

Methods can be recursive as well!

This part was all in Homework 6

```
fclass Rlist(object):
    class EmptyList(object):
       def len (self):
                             There's the
            return 0
                              base case!
    empty = EmptyList()
    def init (self, first, rest=empty):
        self.first = first
        self.rest = rest
   def len (self):
                                     Yes, this call
        return 1 + len(self.rest)
                                      is recursive
    def getitem (self, i):
        if i == 0:
            return self.first
        return self.rest[i-1]
```

Demo

```
>>> s = Rlist(1, Rlist(2, Rlist(3)))
```

```
>>> s = Rlist(1, Rlist(2, Rlist(3)))
>>> s.rest
Rlist(2, Rlist(3))
```

```
>>> s = Rlist(1, Rlist(2, Rlist(3)))
>>> s.rest
Rlist(2, Rlist(3))
>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))
```

```
>>> s = Rlist(1, Rlist(2, Rlist(3)))
>>> s.rest
Rlist(2, Rlist(3))
>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))
def extend_rlist(s1, s2):
```

Recursive list processing almost always involves a recursive call on the rest of the list.

```
>>> s = Rlist(1, Rlist(2, Rlist(3)))
>>> s.rest
Rlist(2, Rlist(3))
>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend_rlist(s1, s2):
   if s1 is Rlist.empty:
```

4

```
>>> s = Rlist(1, Rlist(2, Rlist(3)))
>>> s.rest
Rlist(2, Rlist(3))
>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend_rlist(s1, s2):
   if s1 is Rlist.empty:
        return s2
```

```
>>> s = Rlist(1, Rlist(2, Rlist(3)))
>>> s.rest
Rlist(2, Rlist(3))
>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend_rlist(s1, s2):
    if s1 is Rlist.empty:
        return s2
    return Rlist(s1.first, extend_rlist(s1.rest, s2))
```

Recursive Operations on Recursive Lists

Recursive list processing almost always involves a recursive call on the rest of the list.

```
>>> s = Rlist(1, Rlist(2, Rlist(3)))
>>> s.rest
Rlist(2, Rlist(3))
>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend_rlist(s1, s2):
    if s1 is Rlist.empty:
        return s2
    return Rlist(s1.first, extend_rlist(s1.rest, s2))
```

Demo

```
>>> def map_rlist(s, fn):
```

```
>>> def map_rlist(s, fn):
    if s is Rlist.empty:
```

```
>>> def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
```

We want operations on a whole list, not an element at a time.

```
>>> def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
    return Rlist(fn(s.first), map_rlist(s.rest, fn))
```

```
>>> def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
    return Rlist(fn(s.first), map_rlist(s.rest, fn))
>>> def filter_rlist(s, fn):
```

```
>>> def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
    return Rlist(fn(s.first), map_rlist(s.rest, fn))
>>> def filter_rlist(s, fn):
    if s is Rlist.empty:
```

We want operations on a whole list, not an element at a time.

```
>>> def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
    return Rlist(fn(s.first), map_rlist(s.rest, fn))
>>> def filter_rlist(s, fn):
    if s is Rlist.empty:
        return s
```

We want operations on a whole list, not an element at a time.

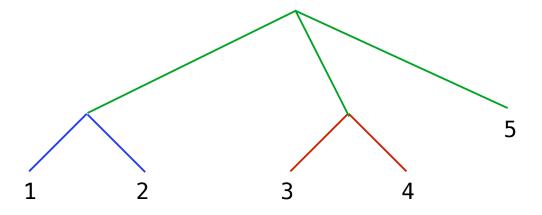
```
>>> def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
    return Rlist(fn(s.first), map_rlist(s.rest, fn))
>>> def filter_rlist(s, fn):
    if s is Rlist.empty:
        return s
    rest = filter_rlist(s.rest, fn)
```

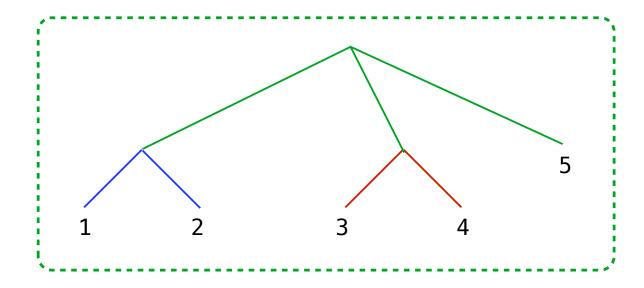
We want operations on a whole list, not an element at a time.

```
>>> def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
    return Rlist(fn(s.first), map_rlist(s.rest, fn))
>>> def filter_rlist(s, fn):
    if s is Rlist.empty:
        return s
    rest = filter_rlist(s.rest, fn)
    if fn(s.first):
```

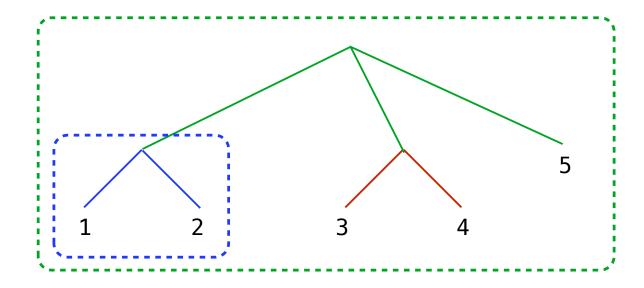
```
>>> def map_rlist(s, fn):
    if s is Rlist.empty:
        return s
    return Rlist(fn(s.first), map_rlist(s.rest, fn))
>>> def filter_rlist(s, fn):
    if s is Rlist.empty:
        return s
    rest = filter_rlist(s.rest, fn)
    if fn(s.first):
        return Rlist(s.first, rest)
```

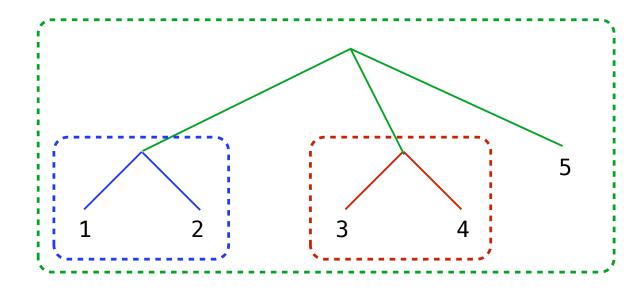
```
>>> def map_rlist(s, fn):
        if s is Rlist.empty:
            return s
        return Rlist(fn(s.first), map_rlist(s.rest, fn))
>>> def filter_rlist(s, fn):
        if s is Rlist.empty:
            return s
        rest = filter rlist(s.rest, fn)
        if fn(s.first):
            return Rlist(s.first, rest)
        return rest
```

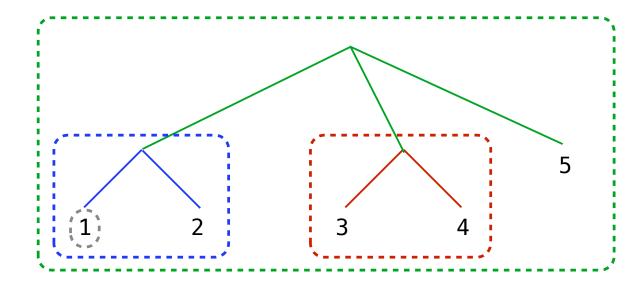

We want operations on a whole list, not an element at a time.

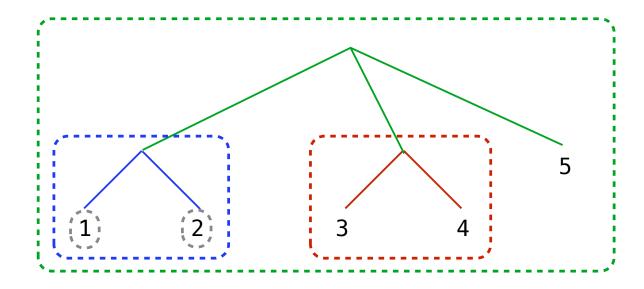

```
>>> def map_rlist(s, fn):
        if s is Rlist.empty:
            return s
        return Rlist(fn(s.first), map rlist(s.rest, fn))
>>> def filter_rlist(s, fn):
        if s is Rlist.empty:
            return s
        rest = filter rlist(s.rest, fn)
        if fn(s.first):
            return Rlist(s.first, rest)
        return rest
```

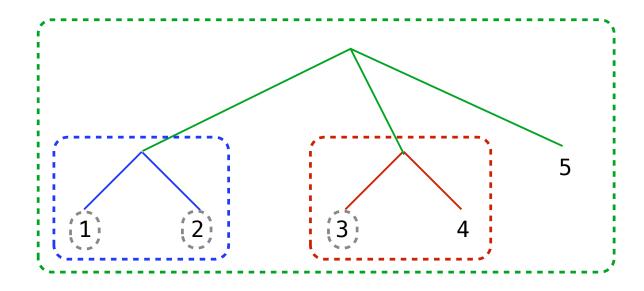
Demo

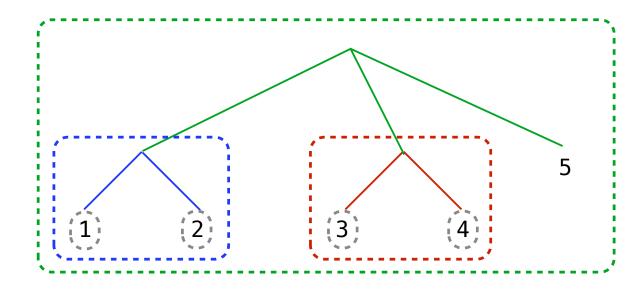

Nested Sequences are Hierarchical Structures.

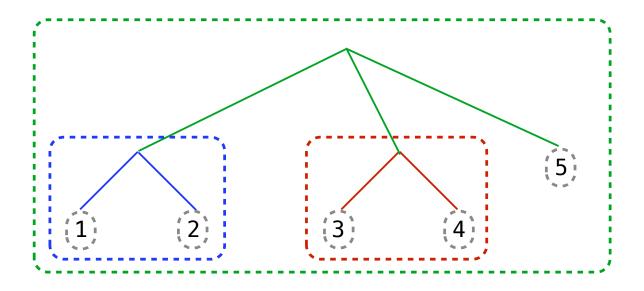

Nested Sequences are Hierarchical Structures.

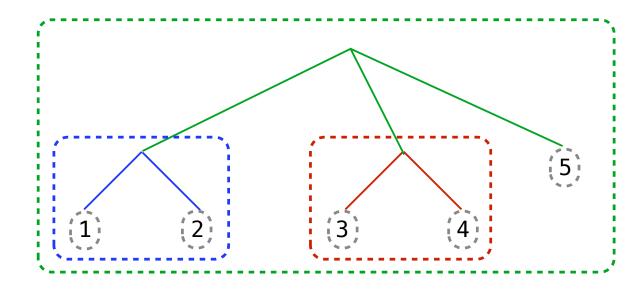



Nested Sequences are Hierarchical Structures.






Nested Sequences are Hierarchical Structures.



Nested Sequences are Hierarchical Structures.

In every tree, a vast forest

Tree operations typically make recursive calls on branches

Tree operations typically make recursive calls on branches

def count_leaves(tree):

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
```

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
```

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
    return sum(map(count_leaves, tree))
```

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
    return sum(map(count_leaves, tree))

def map_tree(tree, fn):
```

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
    return sum(map(count_leaves, tree))

def map_tree(tree, fn):
    if type(tree) != tuple:
```

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
    return sum(map(count_leaves, tree))

def map_tree(tree, fn):
    if type(tree) != tuple:
        return fn(tree)
```

7

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
    return sum(map(count_leaves, tree))

def map_tree(tree, fn):
    if type(tree) != tuple:
        return fn(tree)
    return tuple(map_tree(branch, fn) for branch in tree)
```

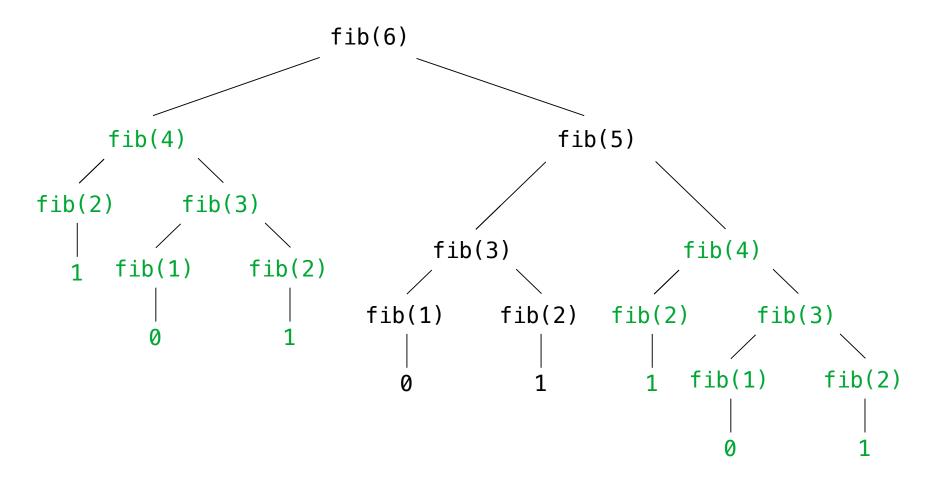
7

Tree operations typically make recursive calls on branches

```
def count_leaves(tree):
    if type(tree) != tuple:
        return 1
    return sum(map(count_leaves, tree))

def map_tree(tree, fn):
    if type(tree) != tuple:
        return fn(tree)
    return tuple(map_tree(branch, fn) for branch in tree)
```

Demo


Trees with Internal Node Values

Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.

Trees with Internal Node Values

Trees can have values at their roots as well as their leaves.

0

Trees need not only have values at their leaves.

class Tree(object):

Trees need not only have values at their leaves.

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
```

9

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
```

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
```

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right
```

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
```

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
```

Trees need not only have values at their leaves.

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
```

9

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
```

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
```

```
class Tree(object):
    def __init__(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right

def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
```

```
class Tree(object):
    def ___init___(self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right
def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib_tree(n-2)
    right = fib_tree(n-1)
```

```
class Tree(object):
    def init (self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right
def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib tree(n-2)
    right = fib tree(n-1)
    return Tree(left.entry + right.entry, left, right)
```

```
class Tree(object):
    def init (self, entry, left=None, right=None):
        self.entry = entry
        self.left = left
        self.right = right
                                                     Demo
def fib_tree(n):
    if n == 1:
        return Tree(0)
    if n == 2:
        return Tree(1)
    left = fib tree(n-2)
    right = fib tree(n-1)
    return Tree(left.entry + right.entry, left, right)
```

One more built-in Python container type

Set literals are enclosed in braces

- Set literals are enclosed in braces
- Duplicate elements are removed on construction

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}
```

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> 3 in s
True
```

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> len(s)
4
```

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
```

10

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}
```

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}

>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}
```

Demo