Tree Recursion

~ .

Tree-shaped processes arise whenever executing the body of a function entails making more than one call to that function.

~

~

~ -

- - -

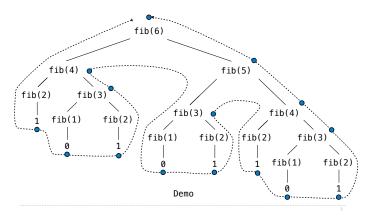
61A Lecture 21

Monday, October 15

n:	1,	۷,	3,	4,	5,	ΰ,	/,	Χ,	9,	•••	'	35
<pre>fib(n):</pre>	0,	1,	1,	2,	З,	5,	8,	13,	21,		,	5,702,887
i	fn fn	== ret == ret	urn 2: urn	1	2) -	+ f	ib(ı	n-1)				O
http://en.wikipedia.org/wiki/File:Fibonacci.ipg												

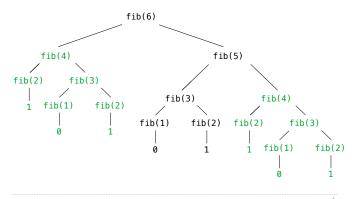
A Tree-Recursive Process

The computational process of fib evolves into a tree structure



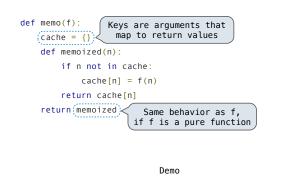
Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same argument multiple times

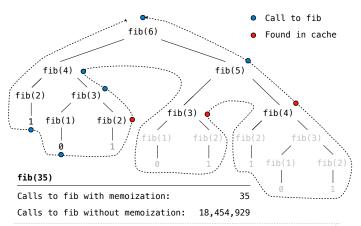


Memoization

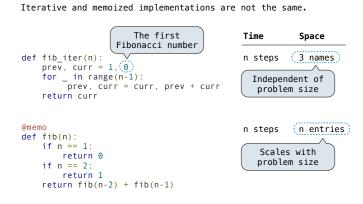
Idea: Remember the results that have been computed before



Memoized Tree Recursion



Iteration vs Memoized Tree Recursion



Counting Change

\$1 = \$0.50 + \$0.25 + \$0.10 + \$0.10 + \$0.05

\$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

\$1 = 2 quarters, 2 dimes, 30 pennies

\$1 = 100 pennies

How many ways are there to change a dollar?

How many ways to change \$0.11 with nickels & pennies?

\$0.11 can be changed with nickels & pennies by

A. Not using any more nickels; \$0.11 with just pennies

B. Using at least one nickel; \$0.06 with nickels & pennies

Counting Change Recursively

How many ways are there to change a dollar?

The number of ways to change an amount ${\bf a}$ using ${\bf n}$ kinds =

- The number of ways to change ${\bf a}$ using all but the first kind ${\bf +}$
- The number of ways to change $(a\ -\ d)$ using all n kinds, where d is the denomination of the first kind of coin.

def count_change(a, kinds=(50, 25, 10, 5, 1)):

<base cases>

d = kinds[0]
return count_change(a, kinds[1:]) + count_change(a-d, kinds)

Demo