61A Lecture 21

Monday, October 15

A Tree-Recursive Process

The computational process of fib evolves into a tree structure

LA Ocee . N
fib(6) e
. flb(4) @ T e ‘
PRI N \‘
L7 N A Fib(a)
1 fib(1)  fib(2) } N
...... o-., 3 ..
“ fib(3) ™
/ N
fib(1)  fib(2)}
Demo 2 """""""" 2

Memoization

Idea: Remember the results that have been computed before

def memo (f): Keys are arguments that
: map to return values

def memoized(n):
if n not in cache:
cache[n] = f(n)

return cache[n]

returni d: Same behavior as f,
if f is a pure function

Demo

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

n: 1,2, 3,4,5,6,7, 8 9, , 35

fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, .y 5,702,887
def fib(n):
if n==1:
return 0
if n==2:
return 1

return fib(n-2) + fib(n-1)

Repetition in Tree-Recursive Computation

This process is highly repetitive; fib is called on the same
argument multiple times

fib(6)
fib(4) fib(5)
/ N
fib(2) fib(3)

‘ i / \ fib(3) fib(4)
1 fib(1) fib(2) ) N VZ o

‘ ‘ fib(1) fib(2) fib(2) fib(3)

’ ! | | N

0 1 1 fib(1) fib(2)
1

Memoized Tree Recursion

Calls to fib without memoization: 18,454,929

a O . @ (Call to fib
fib(6) @ Found in cache
) / ------ \ \.._’
7 fib(4) @ T fib(5) *
e / \\‘x\" }
[ fib(2) fib(3) ™.
N N
w7 fib(3
1 fib(n)  fibye o PG @
------ o )
| ‘ ‘ .
[ 1/
- . \ N
fib(3s) T \ \
Calls to fib with memoization: 35 e



Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

The first
Fibonacci number

def fib_iter(n):
prev, curr =1,
for _ in range(n-1):
prev, curr = curr, prev + curr
return curr

@memo n steps in en
def fib(n): T
if n ==
return 0 Scales w1ﬁh
ifon == problem size
return 1

return fib(n-2) + fib(n-1)

Counting Change Recursively
How many ways are there to change a dollar?

The number of ways to change an amount a using n kinds =
e The number of ways to change a using all but the first kind
+

e The number of ways to change (a - d) using all n kinds,
where d is the denomination of the first kind of coin.

def count_change(a, kinds=(50, 25, 10, 5, 1)):
<base cases>

d = kinds[0]
return count_change(a, kinds[1:]1) + count_change(a-d, kinds)

Demo

Counting Change

$1
$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$0.50 + $0.25 + $0.10 + $0.10 + $0.05
$1 = 2 quarters, 2 dimes, 30 pennies
$1 = 100 pennies

How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

$0.11 can be changed with nickels & pennies by
A. Not using any more nickels; $0.11 with just pennies

B. Using at least one nickel; $0.06 with nickels & pennies



