
61A Lecture 21

Monday, October 15

Tree Recursion

2

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):

 ... , 35

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

 return 0

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

 return 0

 if n == 2:

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

 return 0

 if n == 2:

 return 1

Tree Recursion

Tree-shaped processes arise whenever executing the body of a
function entails making more than one call to that function.

2

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

1, 2, 3, 4, 5, 6, 7, 8, 9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n): ... , 5,702,887

 ... , 35

 def fib(n):

 if n == 1:

 return 0

 if n == 2:

 return 1

 return fib(n-2) + fib(n-1)

A Tree-Recursive Process

3

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(4)

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)fib(4)

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

A Tree-Recursive Process

3

fib(6)

fib(5)

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

The computational process of fib evolves into a tree structure

Demo

Repetition in Tree-Recursive Computation

4

Repetition in Tree-Recursive Computation

4

This process is highly repetitive; fib is called on the same
argument multiple times

Repetition in Tree-Recursive Computation

4

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

This process is highly repetitive; fib is called on the same
argument multiple times

Memoization

Idea: Remember the results that have been computed before

5

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}
Keys are arguments that
map to return values

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

Keys are arguments that
map to return values

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

Keys are arguments that
map to return values

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

Keys are arguments that
map to return values

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

Keys are arguments that
map to return values

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

Memoization

Idea: Remember the results that have been computed before

5

 def memo(f):

 cache = {}

 def memoized(n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Demo

Keys are arguments that
map to return values

Same behavior as f,
if f is a pure function

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

35

Memoized Tree Recursion

6

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib

Found in cache

Calls to fib without memoization:

Calls to fib with memoization:

fib(35)

35

18,454,929

Iteration vs Memoized Tree Recursion

7

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0

The first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):

The first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr

The first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

The first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

The first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

Time SpaceThe first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

Time SpaceThe first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

Time SpaceThe first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

3 names

Time SpaceThe first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

3 names

n entries

Time SpaceThe first
Fibonacci number

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

3 names

n entries

Time SpaceThe first
Fibonacci number

Independent of
problem size

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

7

 def fib_iter(n):
 prev, curr = 1, 0
 for _ in range(n-1):
 prev, curr = curr, prev + curr
 return curr

 @memo
 def fib(n):
 if n == 1:
 return 0
 if n == 2:
 return 1
 return fib(n-2) + fib(n-1)

n steps

n steps

3 names

n entries

Time SpaceThe first
Fibonacci number

Scales with
problem size

Independent of
problem size

Counting Change

8

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

8

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

8

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

8

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

$0.11 can be changed with nickels & pennies by

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

$0.11 can be changed with nickels & pennies by

A. Not using any more nickels; $0.11 with just pennies

Counting Change

$1 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05

$1 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel

$1 = 2 quarters, 2 dimes, 30 pennies

$1 = 100 pennies

8

How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

$0.11 can be changed with nickels & pennies by

A. Not using any more nickels; $0.11 with just pennies

B. Using at least one nickel; $0.06 with nickels & pennies

Counting Change Recursively

How many ways are there to change a dollar?

9

Counting Change Recursively

How many ways are there to change a dollar?

9

The number of ways to change an amount a using n kinds =

Counting Change Recursively

How many ways are there to change a dollar?

9

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

Counting Change Recursively

How many ways are there to change a dollar?

9

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+

Counting Change Recursively

How many ways are there to change a dollar?

9

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

 <base cases>

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

 <base cases>

 d = kinds[0]

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

 <base cases>

 d = kinds[0]

 return count_change(a, kinds[1:]) + count_change(a-d, kinds)

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Counting Change Recursively

How many ways are there to change a dollar?

9

 def count_change(a, kinds=(50, 25, 10, 5, 1)):

 <base cases>

 d = kinds[0]

 return count_change(a, kinds[1:]) + count_change(a-d, kinds)

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds,

where d is the denomination of the first kind of coin.

Demo

