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1, 2, 3, 4, 5, 6, 7,  8,  9,n:

0, 1, 1, 2, 3, 5, 8, 13, 21,fib(n):  ... ,   5,702,887

 ... ,          35

    def fib(n):

        if n == 1:

            return 0

        if n == 2:

            return 1

        return fib(n-2) + fib(n-1)
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    def fib_iter(n):
        prev, curr = 1, 0
        for _ in range(n-1):
             prev, curr = curr, prev + curr
        return curr

    @memo
    def fib(n):
        if n == 1:
            return 0
        if n == 2:
            return 1
        return fib(n-2) + fib(n-1)

n steps

n steps

3 names

n entries

Time SpaceThe first 
Fibonacci number

Scales with 
problem size

Independent of 
problem size
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How many ways are there to change a dollar?

How many ways to change $0.11 with nickels & pennies?

$0.11 can be changed with nickels & pennies by

A. Not using any more nickels; $0.11 with just pennies

B. Using at least one nickel; $0.06 with nickels & pennies
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• The number of ways to change (a - d) using all n kinds, 
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    def count_change(a, kinds=(50, 25, 10, 5, 1)):
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    def count_change(a, kinds=(50, 25, 10, 5, 1)):

        <base cases>

        d = kinds[0]

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds, 

where d is the denomination of the first kind of coin.
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    def count_change(a, kinds=(50, 25, 10, 5, 1)):

        <base cases>

        d = kinds[0]

        return count_change(a, kinds[1:]) + count_change(a-d, kinds)

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds, 

where d is the denomination of the first kind of coin.
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    def count_change(a, kinds=(50, 25, 10, 5, 1)):

        <base cases>

        d = kinds[0]

        return count_change(a, kinds[1:]) + count_change(a-d, kinds)

The number of ways to change an amount a using n kinds =
• The number of ways to change a using all but the first kind

+
• The number of ways to change (a - d) using all n kinds, 

where d is the denomination of the first kind of coin.

Demo


