61A Lecture 20

Friday, October 12

How Are Evaluation Procedures Applied?

T - Execution rule for conditional statements:
Evaluation rule for call expressions: fach Clause 15 considered in order
1.Evaluate the operator and operand subexpressions. I Evaluate the header's expression.
2.Apply the function that is the value of the operator 2.If it is a true value, execute the suite, then skip the
subexpression to the arguments that are the values of the Femaining clauses in the statement.
operand subexpressions. Evaluation rule for or expressions:
Applying user-defined functions: 1.Evaluate the subexpression <left>

1.Create a new local frame that extends the environment with Z':sz:‘:(erses:;(v)s @ true value v, then the expression
which the function is associated. ;

2.Bind the argunents to the function's formal paraneter 3:0chervise, the expression evaluates to the value of the
names in that frame. N

3.Execute the body of the function in the environment
beginning at that frame.
Execution rule for def statements:
1.Create a new function value with the specified name, 3.0therwise, the expression evaluates to the value of the
fornal parameters, and function body. subexpression <right>,
2.Associate that function with the current environment. Evaluation rule for not expressions:
3.Bind the name of the function to the function value in the)
B e e e e et 1.Evaluate <exp>; The value is True if the result is a false
s _ value, and False otherwise.
E";‘E““l"" t”":h for “”9‘""“"" ““;‘"‘"‘5 ot . Execution rule for while statements:
.Evaluate the expression(s) on the right of the equal sign. 1. Evaluate the header’s expression
2.Sinultaneously bind the names on the left to those values . "
in the first frane of the current environment. et o map 1 value, execute the (Whole) suite, then

Evaluation rule for and expressions:
1.Evaluate the subexpression <left>.

2.Tf the result is a false value v, then the expression
evaluates to v.

The most fundamental idea in computer science:

An interpreter, which determines the meaning
of expressions in a programming language,
is just another program.

Example: Pig Latin
Yes, you're in college, learning Pig Latin.

def pig_latin(w):
"""Return the Pig Latin equivalent of English word w."""
if starts_with_a_vowel(w):
return w + 'ay'

return pig_latin(w[l:] + w([0])
def starts_with_a_vowel(w):

"""Return whether w begins with a vowel."""

return w[0].lower() in 'aeiou'

Demo

What Are Programs?

Once upon a time, people wrote programs on blackboards

Every once in a while, they would "punch in" a program

Now, we type programs as text files using editors like Emacs

Programs are just text (or cards) until we interpret them

http:

en.wikipedia.org/wiki/File:IBM_Port-A-Punch.j

Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may
require applying that function again.

Drawing Hands, by M. C. Escher (lithograph, 1948)

The Anatomy of a Recursive Function

- The def statement header is

Recursive functions are
similar to other functions

like ants (more or less)
- Conditional statements check
for base casas HEAD AITRUNK FETOLE GASTER

- Base cases are evaluated
without recursive calls

» Typically, all other cases are
evaluated with recursive calls

def pig_latin(w):

if starts_with_a_vowel(w):

return w + 'ay'

return pig_latin(w[1l:] + w[0])

Iteration vs Recursion

Iteration is a special case of recursion

41=4-3-2-1=24

Using iterative control: Using recursion:

def fact_iter(n):
total, k =1, 1
while k <= n:
total, k = total*k, k+1
return total

def fact(n):
if n==1:
return 1
return n * fact(

Math: n!'=][#
k=1

Names: n, total, k, fact_iter n, fact

Example: Reverse a String

def reverse(s):
"""Return the reverse of a string s."""

Recursive idea: The reverse of a string is the reverse
of the rest of the string, followed by the first letter.

antidisestablishmentarianism

a ntidisestablishmentarianism

JL

msinairatnemhsilbatsesiditn a

reverse(s[1:]1) + s[0]

Base Case: The reverse of an empty string is itself.

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r,i=",
while i < len(s):

o= 1 if n
" ln-(n—1)! otherwise

n-1)

=1

Demo

r, i={

return r <(: Assignment becomes...

)

def reverse2(s):
def reverse_s(r, i):
if not i < len(s):

Arguments to a
recursive call

)

return r
return reverse_s(s|:
return reverse_s('", 0)

)

The Recursive Leap of Faith

def fact(n):
ifn==1
return 1
return n * fact(n-1)

Is fact implemented correctly?
1. Verify the base case.

2. Treat fact(n-1) as a functional

abstraction!
3. Assume that fact(n-1) is correct.
4, Verify that fact(n) is correct,

assuming that fact(n-1) correct.

Photo by Kevin Lee, Preikestolen, Norway

Converting Recursion to Iteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):
if s ==

What's reversed
so far?

How to get each
incremental piece

def reverse_iter(s):
r,i=""28
while i < len(s):
r, i=slil +r, i +1
return r

