61A Lecture 20

Friday, October 12

What Are Programs?

What Are Programs?

Once upon a time, people wrote programs on blackboards

What Are Programs?

Once upon a time, people wrote programs on blackboards

Every once in a while, they would "punch in" a program

What Are Programs?

Once upon a time, people wrote programs on blackboards

Every once in a while, they would "punch in" a program

http://en.wikipedia.org/wiki/File:IBM Port—-A-Punch. jpg

What Are Programs?

Once upon a time, people wrote programs on blackboards

Every once in a while, they would "punch in" a program

Now, we type programs as text files using editors like Emacs

http://en.wikipedia.org/wiki/File:IBM Port—-A-Punch. jpg

What Are Programs?

Once upon a time, people wrote programs on blackboards

Every once in a while, they would "punch in" a program

Now, we type programs as text files using editors like Emacs

Programs are just text (or cards) until we interpret them

http://en.wikipedia.org/wiki/File:IBM Port—-A-Punch. jpg

How Are Evaluation Procedures Applied?

How Are Evaluation Procedures Applied?

Evaluation rule for call expressions:

1.Evaluate the operator and operand subexpressions.

2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

Applying user-defined functions:

1.Create a new local frame that extends the environment with
which the function is associated.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

Execution rule for def statements:

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Associate that function with the current environment.

3.Bind the name of the function to the function value in the
first frame of the current environment.

Execution rule for assignment statements:
1.Evaluate the expression(s) on the right of the equal sign.

2.Simultaneously bind the names on the left to those values
in the first frame of the current environment.

Execution rule for conditional statements:
Each clause is considered in order.
1.Evaluate the header's expression.

2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

Evaluation rule for or expressions:
1.Evaluate the subexpression <left>.

2.If the result is a true value v, then the expression
evaluates to v.

3.0therwise, the expression evaluates to the value of the
subexpression <right>.

Evaluation rule for and expressions:
1.Evaluate the subexpression <left>.

2.If the result is a false value v, then the expression
evaluates to v.

3.0therwise, the expression evaluates to the value of the
subexpression <right>.

Evaluation rule for not expressions:
1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

Execution rule for while statements:

1. Evaluate the header’s expression.

2. If it is a true value, execute the (whole) suite, then

return to step 1.

How Are Evaluation Procedures Applied?

Evaluation rule for call expressions:

1.Evaluate the operator and operand subexpressions.

2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

Applying user-defined functions:

1.Create a new local frame that extends the environment with
which the function is associated.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

Execution rule for def statements:

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Associate that function with the current environment.

3.Bind the name of the function to the function value in the
first frame of the current environment.

Execution rule for assignment statements:

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values
in the first frame of the current environment.

Execution rule for conditional statements:

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.
Evaluation rule for or expressions:
1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.
Evaluation rule for and expressions:
1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.

Evaluation rule for not expressions:
1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.
Execution rule for while statements:

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

The most fundamental idea in computer science:

How Are Evaluation Procedures Applied?

Evaluation rule for call expressions:

1.Evaluate the operator and operand subexpressions.

2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

Applying user-defined functions:

1.Create a new local frame that extends the environment with
which the function is associated.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

Execution rule for def statements:

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Associate that function with the current environment.

3.Bind the name of the function to the function value in the
first frame of the current environment.

Execution rule for assignment statements:

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values
in the first frame of the current environment.

Execution rule for conditional statements:

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.
Evaluation rule for or expressions:
1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.
Evaluation rule for and expressions:
1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.

Evaluation rule for not expressions:
1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.
Execution rule for while statements:

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

The most fundamental idea in computer science:

An interpreter, which determines the meaning
of expressions in a programming language,
is just another program.

Recursive Functions

Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.

Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may
require applying that function again.

Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may
require applying that function again.

&
oy
Jov-v-v-y
I
A A A
AAAAAAM
v ey
&AA&A AAAAA
e U e
Ld Ab vy
ﬁA:A.s‘:u:‘:u:m Andbdy
Ab Aby
AAA&AAtAAA AéA&AAtAAA
Ab A Ab A
AnALnA Aszs £ndh
A A ATTVA
Iy

AAA AA AA AAA {A AA A AAA
Aﬁzxxx‘zsaxzémzsa

Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may
require applying that function again.

A o A o
ﬁAAAAAA}A ﬁAAAAAAA}A

AAAALALL
4 7

AMAD ABA2
AA A

7.\
Aa
by Hb

A, ;AA AAA‘& AA&
gs%szq A“?‘&A. Aszz‘z @?&A
A, La, La 0 L0 f“z a4

ALLLLALLLLLLLALALL

Drawing Hands, by M. C. Escher (lithograph, 1948)

Example: Pig Latin

Example: Pig Latin

Yes, you're in college, learning Pig Latin.

Example: Pig Latin
Yes, you're in college, learning Pig Latin.

def pig _latin(w):
"""Return the Pig Latin equivalent of English word w."""
if starts with _a vowel(w):
return w + 'ay'

return pig latin(w[l:] + w[O])

Example: Pig Latin
Yes, you're in college, learning Pig Latin.

def pig _latin(w):
"""Return the Pig Latin equivalent of English word w."""
if starts with _a vowel(w):
return w + 'ay'

return pig latin(w[l:] + w[O])

def starts with _a vowel(w):
"""Return whether w begins with a vowel."""

return w[O].lower() in 'aeijou'

Example: Pig Latin
Yes, you're in college, learning Pig Latin.

def pig _latin(w):
"""Return the Pig Latin equivalent of English word w."""
if starts with _a vowel(w):
return w + 'ay'

return pig latin(w[l:] + w[O])
def starts with _a vowel(w):

"""Return whether w begins with a vowel."""

return w[O].lower() in 'aeijou'

Demo

The Anatomy of a Recursive Function

The Anatomy of a Recursive Function

Recursive functions are
like ants (more or 1less)

The Anatomy of a Recursive Function

Recursive functions are
like ants (more or less)

HEAD ALITRUNK PETIOLE GASTER
Seutellum pyetanotum Propodeal spiracle
Pronot | /
Occiput Mesonotum, [M_e(atlllora:ic /
cle

\ | spira / 4Metap|eura| gland
Compound eye Mesothoracic | *% /|
\ spiracle \ | /S ulla
¥/ > \ - | /Propodeuny’ / AOrifice

<M/ \ \ |, : /vy,
/) i 1 / //
- //

/

http://en.wikipedia.org/wiki/File:Scheme_ant_worker_anatomy-en.svg

The Anatomy of a Recursive Function

Recursive functions are
like ants (more or less)

HEAD ALITRUNK PETIOLE GASTER

def pig_latin(w):
if starts_with_a_vowel(w):

ay
return pig latin(w[l:] + w[O])

return w +

http://en.wikipedia.org/wiki/File:Scheme_ant_worker_anatomy-en.svg

The Anatomy of a Recursive Function

- The def statement header is Recursive functions are
similar to other functions like ants (more or less)
HEAD ALITRUNK PETIOLE GASTER
Péo:1§1€>\ '.' /

def pig_latin(w):
if starts_with_a_vowel(w):

ay
return pig _latin(w[l:] + w[O])

return w +

http://en.wikipedia.org/wiki/File:Scheme_ant_worker anatomy-en.svg

The Anatomy of a Recursive Function

- The def statement header is
similar to other functions

Recursive functions are
like ants (more or 1less)

HEAD ALITRUNK PETIOLE GASTER

Propodeal spiracle

,Postpetiole (IIl)

vy

def pig_latin(w):
if starts_with_a_vowel(w):

ay
return pig _latin(w[l:] + w[O])

return w +

http://en.wikipedia.org/wiki/File:Scheme_ant_worker anatomy-en.svg

The Anatomy of a Recursive Function

- The def statement header 1is Recursive functions are
similar to other functions like ants (more or less)

- Conditional statements check
for base cases

HEAD ALITRUNK PETIOLE GASTER

5’-“‘_9"‘"“ Metanotum Propodeal spiracle

Occiput Mesonotum, | Metathoracic
N R | spiracle Metapleural gland

def pig_latin(w):
if starts_with_a_vowel(w):

ay
return pig _latin(w[l:] + w[O])

return w +

http://en.wikipedia.org/wiki/File:Scheme_ant_worker anatomy-en.svg

The Anatomy of a Recursive Function

- The def statement header 1is Recursive functions are
similar to other functions like ants (more or less)

- Conditional statements check
for base cases

HEAD ALITRUNK PETIOLE GASTER

5’-“‘_9"‘"“ Metanotum Propodeal spiracle

Occiput Mesonotum, | Metathoracic
N R | spiracle Metapleural gland

def pig_latin(w):
if starts_with_a_vowel(w):

ay
return pig _latin(w[l:] + w[O])

return w +

http://en.wikipedia.org/wiki/File:Scheme_ant_worker anatomy-en.svg

The Anatomy of a Recursive Function

- The def statement header 1is Recursive functions are
similar to other functions like ants (more or less)
- Conditional statements check ,
fO r base Cases HEAD ALITRUNK PETIOLE GASTER
- Base cases are evaluated CZAN "'“ e e

Postpetiole (Ill)

without recursive calls

vy

def pig_latin(w):
if starts_with_a_vowel(w):

ay
return pig _latin(w[l:] + w[O])

return w +

http://en.wikipedia.org/wiki/File:Scheme_ant_worker anatomy-en.svg

The Anatomy of a Recursive Function

- The def statement header 1is Recursive functions are
similar to other functions like ants (more or less)
- Conditional statements check V
for base Cases HEAD ALITRUNK PETIOLE GASTER
- Base cases are evaluated cormie\ N g\ | ™ / e

Postpetiole (Ill)

without recursive calls

vy

def pig_latin(w):
if starts_with_a_vowel(w):

ay
return pig _latin(w[l:] + w[O])

return w +

http://en.wikipedia.org/wiki/File:Scheme_ant_worker anatomy-en.svg

The Anatomy of a Recursive Function

- The def statement header 1is

Recursive functions are
similar to other functions

like ants (more or less)
- Conditional statements check
for base cases

ALITRUNK PETIOLE GASTER

- Base cases are evaluated
without recursive calls

Propodeal spiracle

/ Metapleural gland

]
c

Postpetiole (Ill)

- Typically, all other cases are
evaluated with recursive calls

vy

tocess e"‘u, | \ tin
o H / \\
def pig latin(w):

if starts with _a vowel(w):

- J
J J“' Tblal TTa"“’
return w + 'ay’

g
return pig _latin(w[l:] + w[O])

http://en.wikipedia.org/wiki/File:Scheme_ant_worker anatomy-en.svg

The Anatomy of a Recursive Function

- The def statement header 1is

Recursive functions are
similar to other functions

like ants (more or less)
- Conditional statements check
for base cases

ALITRUNK PETIOLE GASTER

- Base cases are evaluated
without recursive calls

Propodeal spiracle

/ Metapleural gland

]
c

Postpetiole (Ill)

- Typically, all other cases are
evaluated with recursive calls

vy

tocess e"‘u, | \ tin
o H / \\
def pig latin(w):

if starts with _a vowel(w):

- J
J J“' Tblal TTa"“’
return w + 'ay’

g
return pig_latin(w[l:] + w[O])

http://en.wikipedia.org/wiki/File:Scheme_ant_worker anatomy-en.svg

The Anatomy of a Recursive Function

- The def statement header 1is Recursive functions are
similar to other functions like ants (more or less)

- Conditional statements check
for base cases

HEAD ALITRUNK PETIOLE GASTER

Propodeal spiracle

/ Metapleural gland

- Base cases are evaluated
without recursive calls

) Orifice Postpetiole (IIl)

- Typically, all other cases are
evaluated with recursive calls

def pig_latin(w):
if starts_with_a_vowel(w):

ay
return pig_latin(w[l:] + w[O])

return w +

http://en.wikipedia.org/wiki/File:Scheme_ant_worker anatomy-en.svg

lteration vs Recursion

lteration vs Recursion

Iteration is a special case of recursion

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control:

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control:

def fact iter(n):
total, k =1, 1
while k <= n:

total, k = total*k, k+1
return total

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control: Using recursion:

def fact iter(n):
total, k =1, 1
while k <= n:
total, k = total*k, k+1
return total

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control: Using recursion:
def fact iter(n): def fact(n):
total, k =1, 1 if n ==
while k <= n: return 1
total, k = total*k, k+1 return n * fact(n-1)

return total

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control: Using recursion:
def fact iter(n): def fact(n):
total, k =1, 1 if n ==
while k <= n: return 1
total, k = total*k, k+1 return n * fact(n-1)

return total

Math:

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control: Using recursion:
def fact iter(n): def fact(n):
total, k =1, 1 if n ==
while k <= n: return 1
total, k = total*k, k+1 return n * fact(n-1)

return total

lteration vs Recursion

Iteration is a special case of recursion

Using iterative control:

def fact iter(n):
1 ’

total, k =
while k <= n:
total, k

return total

A1 =4-3-2-1=24

Using recursion:

def fact(n):
1 if n

return 1
return n * fact(n-1)

n! = L
ln-(n=1)!

= total*k, k+1

ifn=1

otherwise

lteration vs Recursion

Iteration is a special case of recursion

Using iterative control:

def fact iter(n):
1 ’

total, k =
while k <= n:
total, k

return total

Names:

A1 =4-3-2-1=24

Using recursion:

def fact(n):
1 if n

return 1
return n * fact(n-1)

n! = L
ln-(n=1)!

= total*k, k+1

ifn=1

otherwise

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control: Using recursion:
def fact iter(n): def fact(n):
total, k =1, 1 if n ==
while k <= n: return 1
total, k = total*k, k+1 return n * fact(n-1)

return total

Math: n!=]]* n!{l itn=1

n-(n—1)! otherwise

Names: n, total, k, fact iter

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control: Using recursion:
def fact iter(n): def fact(n):
total, k =1, 1 if n ==
while k <= n: return 1
total, k = total*k, k+1 return n * fact(n-1)

return total

Math: n!=]]* n!{l itn=1

n-(n—1)! otherwise

Names: n, total, k, fact iter n, fact

lteration vs Recursion

Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control: Using recursion:
def fact iter(n): def fact(n):
total, k =1, 1 if n ==
while k <= n: return 1
total, k = total*k, k+1 return n * fact(n-1)

return total

Math: n!=]]* n!{l itn=1

n-(n—1)! otherwise

Names: n, total, k, fact iter n, fact
Demo

The Recursive Leap of Faith

The Recursive Leap of Faith

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

def fact(n):
if n ==
return 1
return n * fact(n-1)

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

def fact(n):
if n ==
return 1
return n * fact(n-1)

Is fact implemented correctly?

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

def fact(n):
if n ==
return 1
return n * fact(n-1)

Is fact implemented correctly?

1. Verify the base case.

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

def fact(n):
if n ==
return 1
return n * fact(n-1)

Is fact implemented correctly?
1. Verify the base case.

2. Treat fact(n-1) as a functional
abstraction!

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

def fact(n):
if n ==
return 1
return n * fact(n-1)

Is fact implemented correctly?
1. Verify the base case.

2. Treat fact(n-1) as a functional
abstraction!

3. Assume that fact(n-1) is correct.

Photo by Kevin Lee, Preikestolen, Norway

The Recursive Leap of Faith

def fact(n):
if n ==
return 1
return n * fact(n-1)

Is fact implemented correctly?
1. Verify the base case.

2. Treat fact(n-1) as a functional
abstraction!

3. Assume that fact(n-1) is correct.

4. Verify that fact(n) is correct,
assuming that fact(n-1) correct.

Photo by Kevin Lee, Preikestolen, Norway

Example: Reverse a String

Example: Reverse a String

def reverse(s):
"""Return the reverse of a string s."""

Example: Reverse a String

def reverse(s):
"""Return the reverse of a string s."""

Recursive idea: The reverse of a string is the reverse
of the rest of the string, followed by the first letter.

Example: Reverse a String

def reverse(s):
"""Return the reverse of a string s."""

Recursive idea: The reverse of a string is the reverse
of the rest of the string, followed by the first letter.

antidisestablishmentarianism

Example: Reverse a String

def reverse(s):
"""Return the reverse of a string s."""

Recursive idea: The reverse of a string is the reverse
of the rest of the string, followed by the first letter.

antidisestablishmentarianism

a ntidisestablishmentarianism

Example: Reverse a String

def reverse(s):
"""Return the reverse of a string s."""

Recursive idea: The reverse of a string is the reverse
of the rest of the string, followed by the first letter.

antidisestablishmentarianism

a ntidisestablishmentarianism

WL

msinairatnemhsilbatsesiditn a

Example: Reverse a String

def reverse(s):
"""Return the reverse of a string s."""

Recursive idea: The reverse of a string is the reverse
of the rest of the string, followed by the first letter.

antidisestablishmentarianism

a ntidisestablishmentarianism

WL

msinairatnemhsilbatsesiditn a

reverse(s[1:]) + s[0]

Example: Reverse a String

def reverse(s):
"""Return the reverse of a string s."""

Recursive idea: The reverse of a string is the reverse
of the rest of the string, followed by the first letter.

antidisestablishmentarianism

a ntidisestablishmentarianism

WL

msinairatnemhsilbatsesiditn a

reverse(s[1:]) + s[0]

Base Case: The reverse of an empty string is itself.

Converting Recursion to Iteration

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):
if s == "'
return s
return reverse(s([1l:]) + s[0]

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):
if == '"':
return_ s

........................

return ireverse(s[1:1): + s[0]

~

........................

What's reversed
so far?

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):
if s == '":
return s

...............................

...............................

[What's reversedj How to get each j

so far? incremental piece

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):

if s == '":
return.s............. R
return ireverse(s(1:1):+is[@l
/\
What's reversed How to get each
so far? incremental piece

def reverse_iter(s):

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):

if s == '":
return.s............. R
return ireverse(s(1:1):+is[@l
/\
What's reversed How to get each
so far? incremental piece

def reverse_iter(s):
r, 1="'"1,20

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):

if s == '":
return.s............. R
return ireverse(s(1:1):+is[@l
/\
What's reversed How to get each
so far? incremental piece

def reverse_iter(s):
r, 1="'",20
while i < len(s):

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):

if s == '":
return.s............. R
return ireverse(s(1:1):+is[@l
/\
What's reversed How to get each
so far? incremental piece

def reverse_iter(s):
r, 1="'",20
while i < len(s):
r, i=s[il + r, 1 + 1

Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):

if s == '":
return.s............. R
return ireverse(s(1:1):+is[@l
/\
What's reversed How to get each
so far? incremental piece

def reverse_iter(s):
r, 1="'",20
while i < len(s):
r, i=s[il + r, 1 + 1
return r

Converting lteration to Recursion

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s):
r, i=s[i] + r, i + 1

return r

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s):
r, i=s[i] + r, i + 1

return r

def reverse2(s):

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s):
r, i=s[i] + r, i + 1

return r

def reverse2(s):
def reverse_s(r, 1i):

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s):
r, i=s[i] + r, i + 1

return r

def reverse2(s):
def reverse_s(r, 1i):
if not i < len(s):

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s):
r, i=s[i] + r, i + 1

return r

def reverse2(s):
def reverse_s(r, 1i):
if not 1 < len(s):
return r

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s):
r, i=s[i] + r, i + 1

return r

def reverse2(s):
def reverse_s(r, 1i):
if not 1 < len(s):
return r
return reverse_s(s[i] + r, 1 + 1)

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s):
r, i=s[i] + r, i + 1

return r

def reverse2(s):
def reverse_s(r, 1i):
if not 1 < len(s):
return r
return reverse_s(s[i] + r, 1 + 1)
return reverse_s('', 0)

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s):

return r

def reverse2(s):
def reverse_s(r, 1i):
if not 1 < len(s):
return r
return reverse_s(s[i] + r, 1 + 1)
return reverse_s('', 0)

Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s): .. .

return r TTTTTTTTrTTTmmTTmTeeT <i: Assignment becomes...j

def reverse2(s):
def reverse_s(r, 1i):
if not 1 < len(s):
return r

Arguments to a
recursive call

.

return reverse_s('', 0)

