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What Are Programs?

Once upon a time, people wrote programs on blackboards

Every once in a while, they would "punch in" a program

Now, we type programs as text files using editors like Emacs

Programs are just text (or cards) until we interpret them

http://en.wikipedia.org/wiki/File:IBM Port—-A-Punch. jpg
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Evaluation rule for call expressions:

1.Evaluate the operator and operand subexpressions.

2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

Applying user-defined functions:

1.Create a new local frame that extends the environment with
which the function is associated.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

Execution rule for def statements:

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Associate that function with the current environment.

3.Bind the name of the function to the function value in the
first frame of the current environment.

Execution rule for assignment statements:
1.Evaluate the expression(s) on the right of the equal sign.

2.Simultaneously bind the names on the left to those values
in the first frame of the current environment.

Execution rule for conditional statements:
Each clause is considered in order.
1.Evaluate the header's expression.

2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

Evaluation rule for or expressions:
1.Evaluate the subexpression <left>.

2.If the result is a true value v, then the expression
evaluates to v.

3.0therwise, the expression evaluates to the value of the
subexpression <right>.

Evaluation rule for and expressions:
1.Evaluate the subexpression <left>.

2.If the result is a false value v, then the expression
evaluates to v.

3.0therwise, the expression evaluates to the value of the
subexpression <right>.

Evaluation rule for not expressions:
1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

Execution rule for while statements:

1. Evaluate the header’s expression.

2. If it is a true value, execute the (whole) suite, then

return to step 1.
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Evaluation rule for call expressions:

1.Evaluate the operator and operand subexpressions.

2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

Applying user-defined functions:

1.Create a new local frame that extends the environment with
which the function is associated.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

Execution rule for def statements:
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formal parameters, and function body.

2.Associate that function with the current environment.

3.Bind the name of the function to the function value in the
first frame of the current environment.
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1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values
in the first frame of the current environment.
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Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.
Evaluation rule for or expressions:
1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.
Evaluation rule for and expressions:
1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.

Evaluation rule for not expressions:
1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.
Execution rule for while statements:

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

The most fundamental idea in computer science:

An interpreter, which determines the meaning
of expressions in a programming language,
is just another program.




Recursive Functions



Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.



Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may
require applying that function again.



Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may
require applying that function again.

&
oy
Jov-v-v-y
I
A A A
AAAAAAM
v ey
&AA&A AAAAA
e U e
Ld Ab vy
ﬁA:A.s‘:u:‘:u:m Andbdy
Ab Aby
AAA&AAtAAA AéA&AAtAAA
Ab A Ab A
AnALnA Aszs £ndh
A A ATTVA
Iy

AAA AA AA AAA {A AA A AAA
Aﬁzxxx‘zsaxzémzsa



Recursive Functions

Definition: A function is called recursive if the body of that
function calls itself, either directly or indirectly.

Implication: Executing the body of a recursive function may
require applying that function again.
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Yes, you're in college, learning Pig Latin.

def pig _latin(w):
"""Return the Pig Latin equivalent of English word w."""
if starts with _a vowel(w):
return w + 'ay'

return pig latin(w[l:] + w[O])
def starts with _a vowel(w):

"""Return whether w begins with a vowel."""

return w[O].lower() in 'aeijou'

Demo
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Iteration is a special case of recursion

A1 =4-3-2-1=24

Using iterative control: Using recursion:
def fact iter(n): def fact(n):
total, k =1, 1 if n ==
while k <= n: return 1
total, k = total*k, k+1 return n * fact(n-1)

return total

Math: n!=]]* n!{l itn=1

n-(n—1)! otherwise

Names: n, total, k, fact iter n, fact
Demo
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The Recursive Leap of Faith

def fact(n):
if n ==
return 1
return n * fact(n-1)

Is fact implemented correctly?
1. Verify the base case.

2. Treat fact(n-1) as a functional
abstraction!

3. Assume that fact(n-1) is correct.

4. Verify that fact(n) is correct,
assuming that fact(n-1) correct.

Photo by Kevin Lee, Preikestolen, Norway
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Example: Reverse a String

def reverse(s):
"""Return the reverse of a string s."""

Recursive idea: The reverse of a string is the reverse
of the rest of the string, followed by the first letter.

antidisestablishmentarianism

a ntidisestablishmentarianism

WL

msinairatnemhsilbatsesiditn a

reverse(s[1:]) + s[0]

Base Case: The reverse of an empty string is itself.
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Converting Recursion to lteration

Can be tricky! Iteration is a special case of recursion

Idea: Figure out what state must be maintained by the function

def reverse(s):

if s == '":
return.s............. R
return ireverse(s(1:1):+is[@l
/\
What's reversed How to get each
so far? incremental piece

def reverse_iter(s):
r, 1="'",20
while i < len(s):
r, i=s[il + r, 1 + 1
return r
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def reverse_iter(s):
r, 1=""20
while i < len(s):
r, i=s[i] + r, i + 1

return r
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def reverse_iter(s):
r, 1=""20
while i < len(s):

return r

def reverse2(s):
def reverse_s(r, 1i):
if not 1 < len(s):
return r
return reverse_s(s[i] + r, 1 + 1)
return reverse_s('', 0)



Converting lteration to Recursion

More formulaic: Iteration is a special case of recursion

Idea: The state of an iteration can be passed as parameters

def reverse_iter(s):
r, 1=""20
while i < len(s): .. .

return r TTTTTTTTrTTTmmTTmTeeT <i: Assignment becomes...j

def reverse2(s):
def reverse_s(r, 1i):
if not 1 < len(s):
return r

Arguments to a
recursive call

___________________________

.

__________________________

return reverse_s('', 0)



