61A Lecture 19

Wednesday, October 10

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
Polymorphic functions using message passing
Interfaces: collections of messages with a meaning for each

Two interchangeable implementations of complex numbers

Today:
An arithmetic system over related types
Type dispatching instead of message passing
Data—-directed programming

Type coercion

What's different? Today's generic functions apply to multiple
arguments that don't share a common interface

Rational Numbers

Rational numbers represented as a numerator and denominator

class Rational (object):

def init_ (self, numer, denom):

g =¢ged(numer, denom):
self.numer = numer // g Greatest common
self.denom = denom // g divisor

def repr_ (self):
return 'Rational ({0}, {1})'.format(self.numer, self.denom)

def add_rational(x, y):
nx, dx = x.numer, X.denom
ny, dy = y.numer, y.denom
return Rational(nx * dy + ny * dx, dx * dy)

def mul _rational(x, y):
return Rational(x.numer * y.numer, x.denom * y.denom)

Complex Numbers: the Rectangular Representation

class ComplexRI (object):

def init_ (self, real, imag):
self.real = real
self.imag = imag

@property
def magnitude(self):
return (self.real ** 2 + self.imag ** 2) ** 0.5

@property
def angle(self):
return atan2(self.imag, self.real)

def repr__ (self):
return 'ComplexRI({0}, {1})'.format(self.real,
self.imag)

Might be either ComplexMA
or ComplexRI instances

return ComplexRI(zl real + z2.real,
zl.imag + z2.imag)

Special Methods

Adding instances of user—defined classes with add

Demo

>>> ComplexRI(1, 2) + ComplexMA(2, 0)
ComplexRI(3.0, 2.0)

>>> ComplexRI(O, 1) * ComplexRI(O, 1)
ComplexMA(1.0, 3.141592653589793)

http://getpython3.com/diveintopython3/special-method—names.html

http://docs.python.org/py3k/reference/datamodel. html#special-method—names

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

How do we add a complex number
and a rational number together?

—— add_complex mul_complex

— add_rational mul_rational —

Complex numbers as

Rational numbers as two—dimensional vectors
numerators & denominators

There are many different techniques for doing this!

Type Dispatching

Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

def

def

def

def

iscomplex(z):
return type(z) in (ComplexRI, ComplexMA)

return type(z) 1is Rational Converted to a

isrational(z):
real number (float)]

add by type dispatching(zl, z2):
"""Add z1 and z2, which may be complex or rational.
if iscomplex(zl) and iscomplex(z2):
return add_complex(zl, z2)
elif iscomplex(zl) and isrational(z2):
return add_complex _and rational(zl, z2)
elif isrational(zl) and iscomplex(z2):
return add_complex _and rational(z2, zl)
else:
add_rational(zl, z2) Demo

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

def type tag(x):
return type tag.tags[type(x)]

Declares that ComplexRI

type_tag.tags = {ComplexRI: 'com', and ComplexMA should be
‘ComplexMA: 'com', treated uniformly
Rational: 'rat'}

def add(zl, z2):

types = (type_tag(zl), type_tag(z2))
return add.implementations|[types] (z1l, z2)

add.implementations = {}

add.implementations[('com', 'com')] = add _complex
add.implementations[('rat', 'rat')] = add_rational
add.implementations[('com', 'rat')] = add_complex and rational
add.implementations[('rat', 'com')] =:add_rational_and_complex:

(:lambda r, z: add_complex_and_rational(z, r):)

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

def add(zl, z2):

types = (type tag(zl), type tag(z2))
return add.implementations[types] (zl, z2)

Question: How many cross—-type implementations are required to
support m types and n operations?

:

real, complex multiply, divide

integer, rational, :J 7n,.(¢n,__]> ‘n add, subtract,

)

4 (4—1) 4= 48

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Arg 1 Arg 2 Add Multiply =
Complex Complex D
Rational Rational Eg
Complex Rational %::—
Rational Complex <\\§§//7

Message Passing

Data-Directed Programming

There's nothing addition-specific about add_by_type

Idea: One dispatch function for (operator, types) pairs

def apply(operator _name, x, y):
tags = (type_tag(x), type_tag(y))
key = (operator_name, tags)
return apply.implementations[key] (x, vy)

Demo

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

>>> def rational to _complex(x):
return ComplexRI(x.numer/x.denom, 0)

>>> coercions = {('rat', 'com'): rational to complex}

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed
programming?

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

def coerce apply(operator _name, x, y):
tx, ty = type_tag(x), type_tag(y)
if tx != ty:
if (tx, ty) 1in coercions:
tx, x = ty, coercions[(tx, ty)](x)
elif (ty, tx) in coercions:
ty, y = tx, coercions[(ty, tx)](y)
else:
return 'No coercion possible.’
assert tx == ty
key = (operator_name, tx)
return coerce apply.implementations[key] (x, V) Demo

Coercion Analysis

Minimal violation of abstraction barriers:
type coercion as necessary, but use abstract data types

we define cross-

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

7 N
From To Coerce Type Add Multiply

Complex Rational Complex
Rational Complex Rational

