
61A Lecture 19

Wednesday, October 10

Generic Functions, Continued

2

Generic Functions, Continued

A function might want to operate on multiple data types

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
• Polymorphic functions using message passing

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
• Polymorphic functions using message passing

• Interfaces: collections of messages with a meaning for each

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
• Polymorphic functions using message passing

• Interfaces: collections of messages with a meaning for each

• Two interchangeable implementations of complex numbers

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
• Polymorphic functions using message passing

• Interfaces: collections of messages with a meaning for each

• Two interchangeable implementations of complex numbers

Today:

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
• Polymorphic functions using message passing

• Interfaces: collections of messages with a meaning for each

• Two interchangeable implementations of complex numbers

Today:
• An arithmetic system over related types

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
• Polymorphic functions using message passing

• Interfaces: collections of messages with a meaning for each

• Two interchangeable implementations of complex numbers

Today:
• An arithmetic system over related types

• Type dispatching instead of message passing

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
• Polymorphic functions using message passing

• Interfaces: collections of messages with a meaning for each

• Two interchangeable implementations of complex numbers

Today:
• An arithmetic system over related types

• Type dispatching instead of message passing

• Data-directed programming

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
• Polymorphic functions using message passing

• Interfaces: collections of messages with a meaning for each

• Two interchangeable implementations of complex numbers

Today:
• An arithmetic system over related types

• Type dispatching instead of message passing

• Data-directed programming

• Type coercion

2

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:
• Polymorphic functions using message passing

• Interfaces: collections of messages with a meaning for each

• Two interchangeable implementations of complex numbers

Today:
• An arithmetic system over related types

• Type dispatching instead of message passing

• Data-directed programming

• Type coercion

What's different? Today's generic functions apply to multiple
arguments that don't share a common interface

2

Rational Numbers

3

Rational Numbers

Rational numbers represented as a numerator and denominator

3

Rational Numbers

Rational numbers represented as a numerator and denominator

3

 class Rational(object):

Rational Numbers

Rational numbers represented as a numerator and denominator

3

 class Rational(object):

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

Rational Numbers

Rational numbers represented as a numerator and denominator

3

 class Rational(object):

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

Greatest common
divisor

Rational Numbers

Rational numbers represented as a numerator and denominator

3

 class Rational(object):

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

Greatest common
divisor

Rational Numbers

Rational numbers represented as a numerator and denominator

3

 class Rational(object):

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

 def add_rational(x, y):
 nx, dx = x.numer, x.denom
 ny, dy = y.numer, y.denom
 return Rational(nx * dy + ny * dx, dx * dy)

Greatest common
divisor

Rational Numbers

Rational numbers represented as a numerator and denominator

3

 class Rational(object):

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

 def add_rational(x, y):
 nx, dx = x.numer, x.denom
 ny, dy = y.numer, y.denom
 return Rational(nx * dy + ny * dx, dx * dy)

 def mul_rational(x, y):
 return Rational(x.numer * y.numer, x.denom * y.denom)

Greatest common
divisor

Complex Numbers: the Rectangular Representation

4

Complex Numbers: the Rectangular Representation

4

 class ComplexRI(object):

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
 def angle(self):
 return atan2(self.imag, self.real)

 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real,
 self.imag)

Complex Numbers: the Rectangular Representation

4

 class ComplexRI(object):

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
 def angle(self):
 return atan2(self.imag, self.real)

 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real,
 self.imag)

 def add_complex(z1, z2):
 return ComplexRI(z1.real + z2.real,
 z1.imag + z2.imag)

Complex Numbers: the Rectangular Representation

4

 class ComplexRI(object):

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
 def angle(self):
 return atan2(self.imag, self.real)

 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real,
 self.imag)

 def add_complex(z1, z2):
 return ComplexRI(z1.real + z2.real,
 z1.imag + z2.imag)

Might be either ComplexMA
or ComplexRI instances

Special Methods

5

Special Methods

Adding instances of user-defined classes with __add__.

5

Special Methods

Adding instances of user-defined classes with __add__.

5

Demo

Special Methods

Adding instances of user-defined classes with __add__.

5

Demo

>>> ComplexRI(1, 2) + ComplexMA(2, 0)

ComplexRI(3.0, 2.0)

Special Methods

Adding instances of user-defined classes with __add__.

5

Demo

>>> ComplexRI(1, 2) + ComplexMA(2, 0)

ComplexRI(3.0, 2.0)

>>> ComplexRI(0, 1) * ComplexRI(0, 1)

ComplexMA(1.0, 3.141592653589793)

Special Methods

Adding instances of user-defined classes with __add__.

5

Demo

>>> ComplexRI(1, 2) + ComplexMA(2, 0)

ComplexRI(3.0, 2.0)

>>> ComplexRI(0, 1) * ComplexRI(0, 1)

ComplexMA(1.0, 3.141592653589793)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html

The Independence of Data Types

6

The Independence of Data Types

Data abstraction and class definitions keep types separate

6

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

6

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

6

add_rational mul_rational

Rational numbers as
numerators & denominators

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

6

add_rational mul_rational

Rational numbers as
numerators & denominators

add_complex mul_complex

Complex numbers as
two-dimensional vectors

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

6

add_rational mul_rational

Rational numbers as
numerators & denominators

add_complex mul_complex

Complex numbers as
two-dimensional vectors

How do we add a complex number
and a rational number together?

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

6

add_rational mul_rational

Rational numbers as
numerators & denominators

add_complex mul_complex

Complex numbers as
two-dimensional vectors

How do we add a complex number
and a rational number together?

There are many different techniques for doing this!

Type Dispatching

7

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) is Rational

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

Converted to a
real number (float)

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""

Converted to a
real number (float)

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)

Converted to a
real number (float)

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)
 elif iscomplex(z1) and isrational(z2):
 return add_complex_and_rational(z1, z2)

Converted to a
real number (float)

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)
 elif iscomplex(z1) and isrational(z2):
 return add_complex_and_rational(z1, z2)
 elif isrational(z1) and iscomplex(z2):
 return add_complex_and_rational(z2, z1)

Converted to a
real number (float)

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)
 elif iscomplex(z1) and isrational(z2):
 return add_complex_and_rational(z1, z2)
 elif isrational(z1) and iscomplex(z2):
 return add_complex_and_rational(z2, z1)
 else:
 add_rational(z1, z2)

Converted to a
real number (float)

Type Dispatching
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid

7

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)
 elif iscomplex(z1) and isrational(z2):
 return add_complex_and_rational(z1, z2)
 elif isrational(z1) and iscomplex(z2):
 return add_complex_and_rational(z2, z1)
 else:
 add_rational(z1, z2)

Converted to a
real number (float)

Demo

Tag-Based Type Dispatching

8

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

8

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

8

 def type_tag(x):
 return type_tag.tags[type(x)]

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

8

 def type_tag(x):
 return type_tag.tags[type(x)]

 type_tag.tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

8

 def type_tag(x):
 return type_tag.tags[type(x)]

 type_tag.tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

Declares that ComplexRI
and ComplexMA should be

treated uniformly

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

8

 def type_tag(x):
 return type_tag.tags[type(x)]

 type_tag.tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

Declares that ComplexRI
and ComplexMA should be

treated uniformly

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

8

 def type_tag(x):
 return type_tag.tags[type(x)]

 type_tag.tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

 add.implementations = {}
 add.implementations[('com', 'com')] = add_complex
 add.implementations[('rat', 'rat')] = add_rational
 add.implementations[('com', 'rat')] = add_complex_and_rational
 add.implementations[('rat', 'com')] = add_rational_and_complex

Declares that ComplexRI
and ComplexMA should be

treated uniformly

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

8

 def type_tag(x):
 return type_tag.tags[type(x)]

 type_tag.tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

 add.implementations = {}
 add.implementations[('com', 'com')] = add_complex
 add.implementations[('rat', 'rat')] = add_rational
 add.implementations[('com', 'rat')] = add_complex_and_rational
 add.implementations[('rat', 'com')] = add_rational_and_complex

lambda r, z: add_complex_and_rational(z, r)

Declares that ComplexRI
and ComplexMA should be

treated uniformly

Type Dispatching Analysis

9

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

9

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

9

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

9

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

9

Question: How many cross-type implementations are required to
support m types and n operations?

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

m · (m � 1) · n

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

9

Question: How many cross-type implementations are required to
support m types and n operations?

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

m · (m � 1) · n

4 · (4 � 1) · 4 = 48

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

9

Question: How many cross-type implementations are required to
support m types and n operations?

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

m · (m � 1) · n

4 · (4 � 1) · 4 = 48

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

9

Question: How many cross-type implementations are required to
support m types and n operations?

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

integer, rational,
real, complex

m · (m � 1) · n

4 · (4 � 1) · 4 = 48

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

9

Question: How many cross-type implementations are required to
support m types and n operations?

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add.implementations[types](z1, z2)

integer, rational,
real, complex

add, subtract,
multiply, divide

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

10

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

10

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

10

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

Type Dispatching

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

10

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

Message Passing

Type Dispatching

Data-Directed Programming

11

Data-Directed Programming

There's nothing addition-specific about add_by_type

11

Data-Directed Programming

There's nothing addition-specific about add_by_type

Idea: One dispatch function for (operator, types) pairs

11

Data-Directed Programming

There's nothing addition-specific about add_by_type

Idea: One dispatch function for (operator, types) pairs

11

 def apply(operator_name, x, y):
 tags = (type_tag(x), type_tag(y))
 key = (operator_name, tags)
 return apply.implementations[key](x, y)

Data-Directed Programming

There's nothing addition-specific about add_by_type

Idea: One dispatch function for (operator, types) pairs

11

 def apply(operator_name, x, y):
 tags = (type_tag(x), type_tag(y))
 key = (operator_name, tags)
 return apply.implementations[key](x, y)

Demo

Coercion

12

Coercion

Idea: Some types can be converted into other types

12

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

12

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

12

>>> def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

12

>>> def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

>>> coercions = {('rat', 'com'): rational_to_complex}

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

12

>>> def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

>>> coercions = {('rat', 'com'): rational_to_complex}

Question: Can any numeric type be coerced into any other?

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

12

>>> def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

>>> coercions = {('rat', 'com'): rational_to_complex}

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed
programming?

Applying Operators with Coercion

13

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

13

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

 assert tx == ty

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

 assert tx == ty

 key = (operator_name, tx)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

 assert tx == ty

 key = (operator_name, tx)

 return coerce_apply.implementations[key](x, y)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

13

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

 assert tx == ty

 key = (operator_name, tx)

 return coerce_apply.implementations[key](x, y) Demo

Coercion Analysis

14

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-
type coercion as necessary, but use abstract data types

14

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-
type coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

14

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-
type coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

14

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-
type coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

14

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-
type coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

14

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational
Rational Complex

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-
type coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

14

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational
Rational Complex

Type Add Multiply
Complex
Rational

