61A Lecture 19

Wednesday, October 10

Generic Functions, Continued

Generic Functions, Continued

A function might want to operate on multiple data types

Generic Functions, Continued

A function might want to operate on multiple data types
Last time:

Generic Functions, Continued

A function might want to operate on multiple data types
Last time:

- Polymorphic functions using message passing

Generic Functions, Continued

A function might want to operate on multiple data types
Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each

Generic Functions, Continued

A function might want to operate on multiple data types
Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Generic Functions, Continued

A function might want to operate on multiple data types
Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

Generic Functions, Continued

A function might want to operate on multiple data types
Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types

Generic Functions, Continued

A function might want to operate on multiple data types
Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types
- Type dispatching instead of message passing

Generic Functions, Continued

A function might want to operate on multiple data types
Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types
- Type dispatching instead of message passing
- Data-directed programming

Generic Functions, Continued

A function might want to operate on multiple data types
Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types
- Type dispatching instead of message passing
- Data-directed programming
- Type coercion

Generic Functions, Continued

A function might want to operate on multiple data types

Last time:

- Polymorphic functions using message passing
- Interfaces: collections of messages with a meaning for each
- Two interchangeable implementations of complex numbers

Today:

- An arithmetic system over related types
- Type dispatching instead of message passing
- Data-directed programming
- Type coercion

What's different? Today's generic functions apply to multiple arguments that don't share a common interface

Rational Numbers

Rational Numbers

Rational numbers represented as a numerator and denominator

Rational Numbers

Rational numbers represented as a numerator and denominator class Rational(object):

Rational Numbers

Rational numbers represented as a numerator and denominator

```
class Rational(object):
def _init_(self, numer, denom):
```


Rational Numbers

Rational numbers represented as a numerator and denominator

```
class Rational(object):
def __init__(self, numer, denom):
    g = gcd(numer, denom):
    self.numer = numer"%
    self.denom = denom // g divisor
Greatest common
```


Rational Numbers

Rational numbers represented as a numerator and denominator

```
class Rational(object):
    def __init__(self, numer, denom):
        g = gcd (nümer, denom);
        self.numer = numer /%
        self.denom = denom // g
```



```
def __repr__(self):
        return 'Rational({0}, {1})'.format(self.numer, self.denom)
```


Rational Numbers

Rational numbers represented as a numerator and denominator

```
class Rational(object):
    def __init__(self, numer, denom):
        g = gcd (nümer, denom);
        self.numer = numer //
        self.denom = denom // g
```



```
    def __repr__(self):
        return 'Rational({0}, {1})'.format(self.numer, self.denom)
def add_rational(x, y):
    nx, dx = x.numer, x.denom
    ny, dy = y.numer, y.denom
    return Rational(nx * dy + ny * dx, dx * dy)
```


Rational Numbers

Rational numbers represented as a numerator and denominator

```
class Rational(object):
    def __init__(self, numer, denom):
        g = gcd (nümer, denom);
        self.numer = numer
        self.denom = denom // g
```



```
    def __repr__(self):
        return 'Rational({0}, {1})'.format(self.numer, self.denom)
def add_rational(x, y):
    nx, dx = x.numer, x.denom
    ny, dy = y.numer, y.denom
    return Rational(nx * dy + ny * dx, dx * dy)
def mul_rational(x, y):
    return Rational(x.numer * y.numer, x.denom * y.denom)
```


Complex Numbers: the Rectangular Representation

Complex Numbers: the Rectangular Representation

```
class ComplexRI(object):
    def __init__(self, real, imag):
        self.real = real
        self.imag = imag
    @property
    def magnitude(self):
        return (self.real ** 2 + self.imag ** 2) ** 0.5
    @property
    def angle(self):
        return atan2(self.imag, self.real)
    def __repr__(self):
        return 'ComplexRI({0}, {1})'.format(self.real,
                self.imag)
```


Complex Numbers: the Rectangular Representation

```
class ComplexRI(object):
    def __init__(self, real, imag):
        self.real = real
        self.imag = imag
    @property
    def magnitude(self):
        return (self.real ** 2 + self.imag ** 2) ** 0.5
    @property
    def angle(self):
        return atan2(self.imag, self.real)
    def __repr__(self):
        return 'ComplexRI({0}, {1})'.format(self.real,
                                    self.imag)
def add_complex(z1, z2):
    return ComplexRI(z1.real + z2.real,
    z1.imag + z2.imag)
```


Complex Numbers: the Rectangular Representation

```
class ComplexRI(object):
    def __init__(self, real, imag):
        self.real = real
        self.imag = imag
    @property
    def magnitude(self):
        return (self.real ** 2 + self.imag ** 2) ** 0.5
    @property
    def angle(self):
        return atan2(self.imag, self.real)
    def __repr__(self):
        return 'ComplexRI({0}, {1})'.format(self.real,
                        self.imag)
Might be either ComplexMA
    or ComplexRI instances
def add_complex(z1, z2;
    re\overline{turn CompïexRİ(z1.real + z2.real,}
    z1.imag + z2.imag)
```


Special Methods

Special Methods

Adding instances of user-defined classes with __add__.

Special Methods

Adding instances of user-defined classes with __add__.

Demo

Special Methods

Adding instances of user-defined classes with \qquad

> Demo

```
>>> ComplexRI(1, 2) + ComplexMA(2, 0)
ComplexRI(3.0, 2.0)
```


Special Methods

Adding instances of user-defined classes with \qquad add \qquad

Demo

```
>>> ComplexRI(1, 2) + ComplexMA(2, 0)
ComplexRI(3.0, 2.0)
>>> ComplexRI(0, 1) * ComplexRI(0, 1)
ComplexMA(1.0, 3.141592653589793)
```


Special Methods

Adding instances of user-defined classes with \qquad add \qquad .

Demo

```
>>> ComplexRI(1, 2) + ComplexMA(2, 0)
ComplexRI(3.0, 2.0)
>>> ComplexRI(0, 1) * ComplexRI(0, 1)
ComplexMA(1.0, 3.141592653589793)
```

http://getpython3.com/diveintopython3/special-method-names.html
http://docs.python.org/py3k/reference/datamodel.html\#special-method-names

The Independence of Data Types

The Independence of Data Types

Data abstraction and class definitions keep types separate

The Independence of Data Types

Data abstraction and class definitions keep types separate
Some operations need to cross type boundaries

The Independence of Data Types

Data abstraction and class definitions keep types separate
Some operations need to cross type boundaries
add_rational mul_rational

Rational numbers as
numerators \& denominators

The Independence of Data Types

Data abstraction and class definitions keep types separate Some operations need to cross type boundaries
add_rational mul_rational

Rational numbers as numerators \& denominators
add_complex mul_complex

Complex numbers as two-dimensional vectors

The Independence of Data Types

Data abstraction and class definitions keep types separate Some operations need to cross type boundaries

> How do we add a complex number and a rational number together?
add_rational mul_rational

Rational numbers as numerators \& denominators
add_complex mul_complex

Complex numbers as two-dimensional vectors

The Independence of Data Types

Data abstraction and class definitions keep types separate Some operations need to cross type boundaries

> How do we add a complex number and a rational number together?
add_rational mul_rational

Rational numbers as numerators \& denominators
add_complex mul_complex

Complex numbers as
two-dimensional vectors

There are many different techniques for doing this!

Type Dispatching

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
```


Type Dispatching

```
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
```

```
def iscomplex(z):
```

def iscomplex(z):
return type(z) in (ComplexRI, ComplexMA)
return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
def isrational(z):
return type(z) is Rational

```
    return type(z) is Rational
```


Type Dispatching

```
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
    def isrational(z):
        return type(z) is Rational
    def add_complex_and_rational(z, r):
    return ComplexR\overline{I}(z.real + r.numer/r.denom, z.imag)
```


Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
```

def isrational(z):
return type(z) is Rational
def add_complex_and_rational (z,r):
return Comp $\bar{l} e x R \bar{I}(z . r e a l+r$ numer/r.denomi, z.imag)

Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
        return type(z) is Rational
    def add_complex_and_rational(z, r):
    return ComplexRİ(z.real +r.numer/r.denomi, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational.
```


Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) is Rational
def add_complex_and_rational(z, r):
    return ComplexRİ(z.real +r.numer/r.denom;, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational.""""
    if iscomplex(z1) and iscomplex(z2):
        return add_complex(z1, z2)
```


Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) is Rational
def add_complex_and_rational(z, r):
    return ComplexRİ(z.real +r.numer/r.denom;, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational."""
    if iscomplex(z1) and iscomplex(z2):
        return add_complex(z1, z2)
    elif iscomplex(z1) and isrational(z2):
        return add_complex_and_rational(z1, z2)
```


Type Dispatching

```
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) is Rational
def add_complex_and_rational(z, r):
    retūn ComplexR\overline{I}(z.real +r.numer/r.denom;, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational."""
    if iscomplex(z1) and iscomplex(z2):
        return add_complex(z1, z2)
    elif iscomplex(z1) and isrational(z2):
        return add_complex_and_rational(z1, z2)
    elif isrational(z1) and iscomplex(z2):
        return add_complex_and_rational(z2, z1)
```


Type Dispatching

```
Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
    return type(z) is Rational
def add_complex_and_rational(z, r):
    retūn ComplexR\overline{I}(z.real +r.numer/r.denom;, z.imag)
def add_by_type_dispatching(z1, z2):
    """Add z1 and z2, which may be complex or rational."""
    if iscomplex(z1) and iscomplex(z2):
        return add_complex(z1, z2)
    elif iscomplex(z1) and isrational(z2):
        return add_complex_and_rational(z1, z2)
    elif isrational(z1) and iscomplex(z2):
        return add_complex_and_rational(z2, z1)
    else:
        add_rational(z1, z2)
```


Type Dispatching

Define a different function for each possible combination of types for which an operation (e.g., addition) is valid

```
def iscomplex(z):
    return type(z) in (ComplexRI, ComplexMA)
```

def isrational(z):
return type(z) is Rational
def add_complex_and_rational (z, r):
return ComplexRĪ (z.real +r.numer/r.denomi, z.imag)
def add_by_type_dispatching(z1, z2):
"""Add z1 and z2, which may be complex or rational."""
if iscomplex(z1) and iscomplex(z2):
return add_complex(z1, z2)
elif iscomplex(z1) and isrational(z2):
return add_complex_and_rational(z1, z2)
elif isrational(z1) and iscomplex(z2):
return add_complex_and_rational(z2, z1)
else:
add_rational(z1, z2)

Tag-Based Type Dispatching

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

```
def type_tag(x):
    return type_tag.tags[type(x)]
```


Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

```
def type_tag(x):
    return type_tag.tags[type(x)]
type_tag.tags = {ComplexRI: 'com',
    ComplexMA: 'com',
    Rational: 'rat'}
```


Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

```
def type_tag(x):
    return type_tag.tags[type(x)]
type_tag.tags = ComplexRI: comi: 揞 Declares that ComplexRI
    ComplexMA: 'com'', treated uniformly
```


Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

```
def type_tag(x):
    return type_tag.tags[type(x)]
type_tag.tags = {\begin{array}{l}{\mathrm{ ComplexRI: 'com':,}}\\{\mathrm{ ComplexMA: com',}}\\{\mathrm{ Rational: rat'}}}\end{array}}
```

Declares that ComplexRI and ComplexMA should be treated uniformly

```
def add(z1, z2):
```

def add(z1, z2):
types = (type_tag(z1), type_tag(z2))
types = (type_tag(z1), type_tag(z2))
return add.implementations[types](z1, z2)

```
    return add.implementations[types](z1, z2)
```


Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

```
def type_tag(x):
    return type_tag.tags[type(x)]
```


Declares that ComplexRI and ComplexMA should be treated uniformly

```
def add(z1, z2):
        types = (type_tag(z1), type_tag(z2))
        return add.implementations[types](z1, z2)
add.implementations = {}
add.implementations[('com', 'com')] = add_complex
add.implementations[('rat', 'rat')] = add_rational
add.implementations[('com', 'rat')] = add_complex_and_rational
add.implementations[('rat', 'com')] = add_rational_and_complex
```


Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

```
def type_tag(x):
    return type_tag.tags[type(x)]
```


Declares that ComplexRI and ComplexMA should be treated uniformly

```
def add(z1, z2):
        types = (type_tag(z1), type_tag(z2))
        return add.implementations[types](z1, z2)
add.implementations = {}
add.implementations[('com', 'com')] = add_complex
add.implementations[('rat', 'rat')] = add_rational
add.implementations[('com', 'rat')] = add_complex_and_rational
add.implementations[('rat', 'com')] = add rational̃and-complex 
```

lambda r, z: add_complex_and_rational(z, r)

Type Dispatching Analysis

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```


Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support m types and n operations?

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support m types and n operations?

$$
m \cdot(m-1) \cdot n
$$

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.implementations[types](z1, z2)
```

Question: How many cross-type implementations are required to support m types and n operations?

$$
\begin{gathered}
m \cdot(m-1) \cdot n \\
4 \cdot(4-1) \cdot 4=48
\end{gathered}
$$

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.imp}lementations[types](z1, z2
```

Question: How many cross-type implementations are required to support m types and n operations?

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

```
def add(z1, z2):
    types = (type_tag(z1), type_tag(z2))
    return add.imp}lementations[types](z1, z2
```

Question: How many cross-type implementations are required to support m types and n operations?

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

Arg 1	Arg 2	Add	Multiply
Complex	Complex		
Rational	Rational		
Complex	Rational		
Rational	Complex		

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

Arg 1	Arg 2	Add	Multiply
Complex	Complex		
Rational	Rational		
Complex	Rational		
Rational	Complex		

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define crosstype functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to various dictionaries

Arg 1	Arg 2	Add	Multiply
Complex	Complex		
Rational	Rational		
Complex	Rational		
Rational	Complex		

Message Passing

Data-Directed Programming

Data-Directed Programming

There's nothing addition-specific about add_by_type

Data-Directed Programming

There's nothing addition-specific about add_by_type
Idea: One dispatch function for (operator, types) pairs

Data-Directed Programming

There's nothing addition-specific about add_by_type
Idea: One dispatch function for (operator, types) pairs

```
def apply(operator_name, x, y):
    tags = (type_tag(x), type_tag(y))
    key = (operator_name, tags)
    return apply.implementations[key](x, y)
```


Data-Directed Programming

There's nothing addition-specific about add_by_type
Idea: One dispatch function for (operator, types) pairs

```
def apply(operator_name, x, y):
    tags = (type_tag(x), type_tag(y))
    key = (operator_name, tags)
    return apply.implementations[key](x, y)
```


Coercion

Coercion

Idea: Some types can be converted into other types

Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

```
>>> def rational_to_complex(x):
    return ComplexRI(x.numer/x.denom, 0)
```


Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

```
>>> def rational_to_complex(x):
    return ComplexRI(x.numer/x.denom, 0)
>>> coercions = {('rat', 'com'): rational_to_complex}
```


Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

```
>>> def rational_to_complex(x):
    return ComplexRI(x.numer/x.denom, 0)
>>> coercions = {('rat', 'com'): rational_to_complex}
```

Question: Can any numeric type be coerced into any other?

Coercion

Idea: Some types can be converted into other types
Takes advantage of structure in the type system

```
>>> def rational_to_complex(x):
    return ComplexRI(x.numer/x.denom, 0)
>>> coercions = {('rat', 'com'): rational_to_complex}
```

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed programming?

Applying Operators with Coercion

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
def coerce_apply(operator_name, x, y):

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
def coerce_apply (operator_name, x, y):
tx, ty $=$ type_tag (x), type_tag (y)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
        tx, x = ty, coercions[(tx, ty)](x)
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
        tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
        tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
        tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
        else:
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
        tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
        else:
        return 'No coercion possible.'
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
        tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
        else:
            return 'No coercion possible.'
    assert tx == ty
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
        tx, x = ty, coercions[(tx, ty)](x)
        elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
        else:
            return 'No coercion possible.'
    assert tx == ty
    key = (operator_name, tx)
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
        tx, x = ty, coercions[(tx, ty)](x)
    elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
        else:
            return 'No coercion possible.'
    assert tx == ty
    key = (operator_name, tx)
    return coerce_apply.implementations[key](x, y)
```


Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations
```
def coerce_apply(operator_name, x, y):
    tx, ty = type_tag(x), type_tag(y)
    if tx != ty:
        if (tx, ty) in coercions:
        tx, x = ty, coercions[(tx, ty)](x)
    elif (ty, tx) in coercions:
        ty, y = tx, coercions[(ty, tx)](y)
        else:
            return 'No coercion possible.'
    assert tx == ty
    key = (operator_name, tx)
    return coerce_apply.implementations[key](x, y)

Coercion Analysis

\section*{Coercion Analysis}

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

\section*{Coercion Analysis}

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

\section*{Coercion Analysis}

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type
More sharing: All operators use the same coercion scheme

\section*{Coercion Analysis}

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme
\begin{tabular}{|c|c|c|c|}
\hline Arg 1 & Arg 2 & Add & Multiply \\
\hline Complex & Complex & & \\
\hline Rational & Rational & & \\
\hline Complex & Rational & & \\
\hline Rational & Complex & & \\
\hline
\end{tabular}

\section*{Coercion Analysis}

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme
\[\)\begin{tabular}{|c|c|c|c|}
\hline \text { Arg 1 } & \text { Arg 2 } & \text { Add } & \text { Multiply } \\
\hline \text { Complex } & \text { Complex } & & \\
\hline \text { Rational } & \text { Rational } & & \\
\hline \text { Complex } & \text { Rational } & & \\
\hline \text { Rational } & \text { Complex } & & \\
\hline \multicolumn{4}{|c|}{} \\
\begin{tabular}{|c|c|c|}
\hline \text { From } & \text { To } & \text { Coerce } \\
\hline \text { Complex } & \text { Rational } & \\
\hline \text { Rational } & \text { Complex } & \\
\hline
\end{tabular}
\end{tabular} \begin{tabular}{l} 
\\
\hline
\end{tabular}
\]

\section*{Coercion Analysis}

Minimal violation of abstraction barriers: we define crosstype coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type
More sharing: All operators use the same coercion scheme
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & Arg 1 & Arg 2 & Add & Multiply & \\
\hline & Complex & Complex & & & \\
\hline & Rational & Rational & & & \\
\hline & Complex & Rational & & & \\
\hline & Rational & Complex & & & \\
\hline & & \[
M
\] & \multicolumn{2}{|l|}{\[
\Sigma
\]} & \\
\hline From & To & Coerce & Type & Add & Multiply \\
\hline Complex & Rational & & Complex & & \\
\hline Rational & Complex & & Rational & & \\
\hline
\end{tabular}```

