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Generic Functions, Continued

A function might want to operate on multiple data types

Last time: 
• Polymorphic functions using message passing

• Interfaces: collections of messages with a meaning for each

• Two interchangeable implementations of complex numbers

Today:
• An arithmetic system over related types

• Type dispatching instead of message passing

• Data-directed programming

• Type coercion

What's different? Today's generic functions apply to multiple 
arguments that don't share a common interface
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Rational numbers represented as a numerator and denominator

3

    class Rational(object):

        def __init__(self, numer, denom):
            g = gcd(numer, denom)
            self.numer = numer // g
            self.denom = denom // g

        def __repr__(self):
            return 'Rational({0}, {1})'.format(self.numer, self.denom)

    def add_rational(x, y):
        nx, dx = x.numer, x.denom
        ny, dy = y.numer, y.denom
        return Rational(nx * dy + ny * dx, dx * dy)

    def mul_rational(x, y):
        return Rational(x.numer * y.numer, x.denom * y.denom)

Greatest common 
divisor
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    class ComplexRI(object):

        def __init__(self, real, imag):
            self.real = real
            self.imag = imag

        @property
        def magnitude(self):
            return (self.real ** 2 + self.imag ** 2) ** 0.5

        @property
        def angle(self):
            return atan2(self.imag, self.real)

        def __repr__(self):
            return 'ComplexRI({0}, {1})'.format(self.real,
                                                self.imag)

   def add_complex(z1, z2):
        return ComplexRI(z1.real + z2.real, 
                         z1.imag + z2.imag)

Might be either ComplexMA 
or ComplexRI instances
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Special Methods

Adding instances of user-defined classes with __add__.

5

Demo

>>> ComplexRI(1, 2) + ComplexMA(2, 0)

ComplexRI(3.0, 2.0)

>>> ComplexRI(0, 1) * ComplexRI(0, 1)

ComplexMA(1.0, 3.141592653589793)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html
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The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

6

add_rational  mul_rational

Rational numbers as 
numerators & denominators

add_complex  mul_complex

Complex numbers as
two-dimensional vectors

How do we add a complex number 
and a rational number together?

There are many different techniques for doing this!
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    def iscomplex(z):
        return type(z) in (ComplexRI, ComplexMA)

    def isrational(z):
        return type(z) is Rational
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    def type_tag(x):
        return type_tag.tags[type(x)]
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                     Rational:  'rat'}

    def add(z1, z2):
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Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type

8

    def type_tag(x):
        return type_tag.tags[type(x)]

    type_tag.tags = {ComplexRI: 'com', 
                     ComplexMA: 'com', 
                     Rational:  'rat'}

    def add(z1, z2):
        types = (type_tag(z1), type_tag(z2))
        return add.implementations[types](z1, z2)

    add.implementations = {}
    add.implementations[('com', 'com')] = add_complex
    add.implementations[('rat', 'rat')] = add_rational
    add.implementations[('com', 'rat')] = add_complex_and_rational
    add.implementations[('rat', 'com')] = add_rational_and_complex

lambda r, z: add_complex_and_rational(z, r)

Declares that ComplexRI 
and ComplexMA should be 

treated uniformly
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m · (m � 1) · n

4 · (4 � 1) · 4 = 48

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the 
existing system by adding new entries to various dictionaries

9

Question: How many cross-type implementations are required to 
support m types and n operations?

    def add(z1, z2):
        types = (type_tag(z1), type_tag(z2))
        return add.implementations[types](z1, z2)

integer, rational, 
real, complex

add, subtract, 
multiply, divide
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Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-
type functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the 
existing system by adding new entries to various dictionaries

10

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

Message Passing

Type Dispatching
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Idea: One dispatch function for (operator, types) pairs

11

    def apply(operator_name, x, y):
        tags = (type_tag(x), type_tag(y))
        key = (operator_name, tags)
        return apply.implementations[key](x, y)
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Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

12

>>> def rational_to_complex(x):
        return ComplexRI(x.numer/x.denom, 0)

>>> coercions = {('rat', 'com'): rational_to_complex}

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed 
programming?
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